Source code for ultranest.utils

# noqa: D400 D205
"""
Utility functions for logging and statistics
--------------------------------------------
"""

from __future__ import division, print_function

import errno
import logging
import os
import sys

import numpy as np
from numpy import pi


[docs] def create_logger(module_name, log_dir=None, level=logging.INFO): """ Set up the logging channel `module_name`. Append to ``debug.log`` in `log_dir` (if not ``None``). Write to stdout with output level `level`. If logging handlers are already registered for this module, no new handlers are registered. Parameters ---------- module_name: str logger module log_dir: str directory to write debug.log file into level: logging level which level (and above) to log to stdout. Returns ------- logger: logger instance """ logger = logging.getLogger(str(module_name)) first_logger = logger.handlers == [] if log_dir is not None and first_logger: # create file handler which logs even debug messages handler = logging.FileHandler(os.path.join(log_dir, 'debug.log')) msgformat = '%(asctime)s [{}] [%(levelname)s] %(message)s' formatter = logging.Formatter( msgformat.format(module_name), datefmt='%H:%M:%S') handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger.addHandler(handler) if first_logger: logger.setLevel(logging.DEBUG) # if it is new, register to write to stdout handler = logging.StreamHandler(sys.stdout) handler.setLevel(level) formatter = logging.Formatter('[{}] %(message)s'.format(module_name)) handler.setFormatter(formatter) logger.addHandler(handler) logger.addHandler(logging.NullHandler()) return logger
def _makedirs(name): """python2-compatible makedir.""" # for Python2 compatibility: try: os.makedirs(name) except OSError as e: if e.errno != errno.EEXIST: raise e # Python 3: # os.makedirs(name, exist_ok=True)
[docs] def make_run_dir(log_dir, run_num=None, append_run_num=True, max_run_num=10000): """Generate a new numbered directory for this run to store output. Parameters ---------- log_dir: str base path run_num: int folder to add to path, such as prefix/run1/ append_run_num: bool If true, set run_num to next unused number max_run_num: int Maximum number of automatic run subfolders Returns ------- folderpath: dict dictionary of folder paths for different purposes. Keys are "run_dir" (the path), "info", "results", "chains", "plots". """ _makedirs(log_dir) if run_num is None or run_num == '': # loop over existing folders (or files) of the form log_dir/runX # to find next available run_num (up to the hardcoded maximum of 1000) for run_num in range(1, max_run_num): if os.path.exists(os.path.join(log_dir, 'run%s' % run_num)): continue else: break else: raise ValueError("log directory '%s' already contains maximum number of run subdirectories (%d)" % (log_dir, max_run_num)) if append_run_num: run_dir = os.path.join(log_dir, 'run%s' % run_num) else: run_dir = log_dir if not os.path.isdir(run_dir): print('Creating directory for new run %s' % run_dir) _makedirs(run_dir) if not os.path.isdir(os.path.join(run_dir, 'info')): _makedirs(os.path.join(run_dir, 'info')) _makedirs(os.path.join(run_dir, 'results')) _makedirs(os.path.join(run_dir, 'chains')) _makedirs(os.path.join(run_dir, 'extra')) _makedirs(os.path.join(run_dir, 'plots')) return {'run_dir': run_dir, 'info': os.path.join(run_dir, 'info'), 'results': os.path.join(run_dir, 'results'), 'chains': os.path.join(run_dir, 'chains'), 'extra': os.path.join(run_dir, 'extra'), 'plots': os.path.join(run_dir, 'plots') }
[docs] def vectorize(function): """Vectorize likelihood or prior_transform function.""" def vectorized(args): """Vectorized version of function.""" return np.asarray([function(arg) for arg in args]) # give a user-friendly name to the vectorized version of the function # getattr works around methods, which do not have __name__ vectorized.__name__ = getattr(function, '__name__', vectorized.__name__) return vectorized
"""Square root of a small number.""" SQRTEPS = (float(np.finfo(float).eps))**0.5
[docs] def resample_equal(samples, weights, rstate=None): """Resample the samples so that the final samples all have equal weight. Each input sample appears in the output array either `floor(weights[i] * N)` or `ceil(weights[i] * N)` times, with `floor` or `ceil` randomly selected (weighted by proximity). Parameters ---------- samples : `~numpy.ndarray` Unequally weight samples returned by the nested sampling algorithm. Shape is (N, ...), with N the number of samples. weights : `~numpy.ndarray` Weight of each sample. Shape is (N,). rstate : `~numpy.random.RandomState` random number generator. If not provided, numpy.random is used. Returns ------- equal_weight_samples : `~numpy.ndarray` Samples with equal weights, same shape as input samples. Examples -------- >>> x = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) >>> w = np.array([0.6, 0.2, 0.15, 0.05]) >>> nestle.resample_equal(x, w) array([[ 1., 1.], [ 1., 1.], [ 1., 1.], [ 3., 3.]]) Notes ----- Implements the systematic resampling method described in `this PDF <http://people.isy.liu.se/rt/schon/Publications/HolSG2006.pdf>`_. Another way to sample according to weights would be:: N = len(weights) new_samples = samples[np.random.choice(N, size=N, p=weights)] However, the method used in this function is less "noisy". """ if abs(np.sum(weights) - 1.) > SQRTEPS: # same tol as in np.random.choice. raise ValueError("weights do not sum to 1 (%g)" % np.sum(weights)) if rstate is None: rstate = np.random N = len(weights) # make N subdivisions, and choose positions with a consistent random offset positions = (rstate.random() + np.arange(N)) / N idx = np.zeros(N, dtype=np.int_) cumulative_sum = np.cumsum(weights) i, j = 0, 0 while i < N: if positions[i] < cumulative_sum[j]: idx[i] = j i += 1 else: j += 1 rstate.shuffle(idx) return samples[idx]
[docs] def listify(*args): """ Concatenate args, which are (made to be) lists. Parameters ---------- args: iterable Lists to concatenate. Returns ------- list: Concatenation of the lists in args. """ out = [] for a in args: out += list(a) return out
[docs] def quantile(x, q, weights=None): """Compute (weighted) quantiles from an input set of samples. Parameters ---------- x : `~numpy.ndarray` with shape (nsamps,) Input samples. q : `~numpy.ndarray` with shape (nquantiles,) The list of quantiles to compute from `[0., 1.]`. weights : `~numpy.ndarray` with shape (nsamps,), optional The associated weight from each sample. Returns ------- quantiles : `~numpy.ndarray` with shape (nquantiles,) The weighted sample quantiles computed at `q`. """ # Initial check. x = np.atleast_1d(x) q = np.atleast_1d(q) # Quantile check. if np.any(q < 0.0) or np.any(q > 1.0): raise ValueError("Quantiles must be between 0. and 1.") if weights is None: # If no weights provided, this simply calls `np.percentile`. return np.percentile(x, list(100.0 * q)) else: # If weights are provided, compute the weighted quantiles. weights = np.atleast_1d(weights) if len(x) != len(weights): raise ValueError("Dimension mismatch: len(weights) != len(x).") idx = np.argsort(x) # sort samples sw = weights[idx] # sort weights cdf = np.cumsum(sw)[:-1] # compute CDF cdf /= cdf[-1] # normalize CDF cdf = np.append(0, cdf) # ensure proper span quantiles = np.interp(q, cdf, x[idx]).tolist() return quantiles
[docs] def vol_prefactor(n): """Volume constant for an `n`-dimensional sphere. for `n` even: $$ (2pi)^(n /2) / (2 * 4 * ... * n)$$ for `n` odd : $$2 * (2pi)^((n-1)/2) / (1 * 3 * ... * n)$$ Parameters ---------- n: int Dimensionality Returns ------- Volume: float """ if n % 2 == 0: f = 1. i = 2 else: f = 2. i = 3 while i <= n: f *= 2. / i * pi i += 2 return f
[docs] def is_affine_transform(a, b): """ Check if one points *a* and *b* are related by an affine transform. The implementation currently returns False for rotations. Parameters ---------- a: array transformed points b: array original points Returns ------- is_affine: bool """ n, da = a.shape nb, db = b.shape assert n == nb assert db >= da n = (n // 2) * 2 a1 = a[0:n:2] a2 = a[1:n:2] b1 = b[0:n:2,:da] b2 = b[1:n:2,:da] slopes = (b2 - b1) / (a2 - a1) if not np.allclose(slopes, slopes[0]): return False offsets = b1 - slopes * a1 if not np.allclose(offsets, offsets[0]): return False return True
[docs] def normalised_kendall_tau_distance(values1, values2, i=None, j=None): """ Normalised Kendall tau distance between two equally sized arrays. see https://en.wikipedia.org/wiki/Kendall_tau_distance You can optionally pass precomputed indices:: i, j = np.meshgrid(np.arange(N), np.arange(N)) Parameters ---------- values1: array of ints ranks values2: array of ints other ranks (same length as values1) i: array of ints 2d indices selecting values1 j: array of ints 2d indices selecting values2 Returns ------- distance: float """ N = len(values1) assert len(values2) == N, "Both lists have to be of equal length" if i is None or j is None: i, j = np.meshgrid(np.arange(N), np.arange(N)) a = np.argsort(values1) b = np.argsort(values2) ndisordered = np.logical_or(np.logical_and(a[i] < a[j], b[i] > b[j]), np.logical_and(a[i] > a[j], b[i] < b[j])).sum() return ndisordered / (N * (N - 1))
def _merge_transform_loglike_gradient_function(transform, loglike, gradient): def transform_loglike_gradient(u): """Combine transform, likelihood and gradient function.""" p = transform(u.reshape((1, -1))) return p[0], loglike(p)[0], gradient(u) return transform_loglike_gradient
[docs] def verify_gradient(ndim, transform, loglike, gradient, verbose=False, combination=False): """ Check with numerical differentiation if gradient function is plausibly correct. Raises AssertError if not fulfilled. All functions are vectorized. Parameters ---------- ndim : int dimensionality transform : function transform unit cube parameters to physical parameters, vectorized loglike : function loglikelihood function, vectorized gradient : function computes gradient of loglike to unit cube parameters. Takes a single point and returns a single vector. verbose : bool whether to show intermediate test results combination : bool if true, the gradient function should return a tuple of: (transformed parameters, loglikelihood, gradient) for a given unit cube point. """ if combination: transform_loglike_gradient = gradient else: transform_loglike_gradient = _merge_transform_loglike_gradient_function(transform, loglike, gradient) eps = 1e-6 N = 10 for _i in range(N): u = np.random.uniform(2 * eps, 1 - 2 * eps, size=(1, ndim)) theta = transform(u) if verbose: print("---") print() print("starting at:", u, ", theta=", theta) Lref = loglike(theta)[0] if verbose: print("Lref=", Lref) p, L, grad = transform_loglike_gradient(u[0,:]) assert np.allclose(p, theta), (p, theta) if verbose: print("gradient function gave: L=", L, "grad=", grad) assert np.allclose(L, Lref), (L, Lref) # walk so that L increases by 10 step = eps * grad / (grad**2).sum()**0.5 uprime = u + step thetaprime = transform(uprime) if verbose: print("new position:", uprime, ", theta=", thetaprime) Lprime = loglike(thetaprime)[0] if verbose: print("L=", Lprime) # going a step of eps in the prior, should be a step in L by: Lexpected = Lref + np.dot(step, grad) if verbose: print("expectation was L=", Lexpected, ", given", Lref, grad, eps) assert np.allclose(Lprime, Lexpected, atol=0.1 / ndim), \ (u, uprime, theta, thetaprime, grad, eps * grad / L, L, Lprime, Lexpected)
[docs] def distributed_work_chunk_size(num_total_tasks, mpi_rank, mpi_size): """ Divide tasks uniformly. Computes the number of tasks for process number `mpi_rank`, so that `num_total_tasks` tasks are spread uniformly among `mpi_size` processes. Parameters ---------- num_total_tasks : int total number of tasks to be split mpi_rank : int process id mpi_size : int total number of processes """ return (num_total_tasks + mpi_size - 1 - mpi_rank) // mpi_size
[docs] def submasks(mask, *masks): """ Get indices for a submasked array. Returns indices, so that a[indices] is equivalent to a[mask][mask1][mask2]. Parameters ---------- mask : np.array(dtype=bool) selection of some array masks : list of np.array(dtype=bool) each further mask is a subselection Returns ------- indices : np.array(dtype=np.int_) indices which select the subselection in the original array """ indices, = np.where(mask) for othermask in masks: indices = indices[othermask] return indices