Basic usage
Using UltraNest in a project is as simple as:
import ultranest
sampler = ultranest.ReactiveNestedSampler(param_names, my_likelihood, my_prior_transform,
log_dir="myanalysis", resume=True)
result = sampler.run()
sampler.print_results()
All parameters and methods of ReactiveNestedSampler are documented in the API reference.
Simple example
To demonstrate, we define a spectral line fitting problem.
Lets generate some data over a wavelength range with a noisy signal.
[1]:
import numpy as np
x = np.linspace(400, 800, 100)
yerr = 1.0
y = np.random.normal(20 * np.exp(-0.5 * ((x-500)/4.2)**2), yerr)
[2]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.errorbar(x, y, yerr=yerr, ls=' ', marker='x')
plt.plot(x, 20 * np.exp(-0.5 * ((x-500)/4.2)**2), ls=':', alpha=0.5, color='k')
plt.xlabel('x')
plt.ylabel('y');
This problem has 3 parameters: The location, amplitude and width of the gaussian line. We assume that the noise level is known.
[3]:
param_names = ['location', 'amplitude', 'width']
In UltraNest, the parameter space is defined through a transform from unit values (0…1) to the physical range.
The next function demonstrates:
a uniform prior for a location parameter
a log-uniform prior for a scale parameter
a log-normal prior
[4]:
import scipy.stats
def my_prior_transform(cube):
params = cube.copy()
# transform location parameter: uniform prior
lo = 400
hi = 800
params[0] = cube[0] * (hi - lo) + lo
# transform amplitude parameter: log-uniform prior
lo = 0.1
hi = 100
params[1] = 10**(cube[1] * (np.log10(hi) - np.log10(lo)) + np.log10(lo))
# More complex prior, you can use the ppf functions
# from scipy.stats, such as scipy.stats.norm(mean, std).ppf
# transform for width:
# a log-normal centered at 1 +- 1dex
params[2] = 10**scipy.stats.norm.ppf(cube[2], 0, 1)
return params
Next, we need to specify the data likelihood given certain parameters:
[5]:
from numpy import log
def my_likelihood(params):
location, amplitude, width = params
# compute intensity at every x position according to the model
y_model = amplitude * np.exp(-0.5 * ((x - location)/width)**2)
# compare model and data with gaussian likelihood:
like = -0.5 * (((y_model - y)/yerr)**2).sum()
return like
We are now ready to explore this parameter space!
[6]:
import ultranest
sampler = ultranest.ReactiveNestedSampler(param_names, my_likelihood, my_prior_transform)
ReactiveNestedSampler has several options to specify what logging and file output it should produce.
[7]:
result = sampler.run()
sampler.print_results()
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-5e+01
[ultranest] Likelihood function evaluations: 12958
[ultranest] logZ = -64.02 +- 0.242
[ultranest] Effective samples strategy satisfied (ESS = 866.7, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.12 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy wants 189 minimum live points (dlogz from 0.19 to 0.57, need <0.5)
[ultranest] logZ error budget: single: 0.27 bs:0.24 tail:0.01 total:0.24 required:<0.50
[ultranest] done iterating.
logZ = -64.026 +- 0.534
single instance: logZ = -64.026 +- 0.188
bootstrapped : logZ = -64.021 +- 0.534
tail : logZ = +- 0.010
insert order U test : converged: True correlation: inf iterations
location : 499.47│ ▁ ▁▁▁▁▁▁▁▂▂▂▄▅▆▆▇▇▆▇▆▅▅▃▂▂▂▁▁▁▁▁▁▁ ▁ │501.44 500.43 +- 0.22
amplitude : 16.30 │ ▁▁▁▁▁▁▁▂▁▂▃▄▃▅▆▅▇▆▆▆▅▅▄▃▃▁▁▁▁▁▁▁▁▁▁▁▁ │22.82 19.33 +- 0.84
width : 3.76 │ ▁▁▁▁▁▁▂▃▃▃▅▅▆▇▇▇▇▇▇▅▆▄▃▃▂▁▁▁▁ ▁▁▁▁▁ ▁ │5.52 4.52 +- 0.22
[8]:
from ultranest.plot import cornerplot
cornerplot(result)
[8]:
sampler = ultranest.ReactiveNestedSampler(
param_names,
loglike=my_likelihood,
transform=my_prior_transform,
## additional parameter properties:
# identify circular parameters
wrapped_params=[False, False, False],
# add derived calculations
derived_param_names=[],
# store outputs for resuming:
log_dir='my_folder/,
resume='resume' or 'overwrite' or 'subfolder',
)
Both ReactiveNestedSampler and its .run() function have several options to specify what logging and file output they should produce, and how they should explore the parameter space.
You can create more diagnostic plots with:
sampler.plot_run()
sampler.plot_trace()
sampler.plot_corner()
Further topics
Check out the rest of the documentation and the tutorials.
They illustrate the features of UltraNest, including:
Model comparison
Visualisation
Saving & Resuming output
Controlling output
Parallelisation
Handling high dimensional problems
…