Source code for ultranest.popstepsampler

"""
Vectorized step samplers
------------------------

Likelihood based on GPUs (model emulators based on neural networks,
or JAX implementations) can evaluate hundreds of points as efficiently
as one point. The implementations in this module leverage this power,
by providing random walks of populations of walkers.
"""

import numpy as np
from ultranest.utils import submasks
from ultranest.stepfuncs import evolve, step_back, update_vectorised_slice_sampler
from ultranest.stepfuncs import generate_cube_oriented_direction, generate_cube_oriented_direction_scaled
from ultranest.stepfuncs import generate_random_direction, generate_region_oriented_direction, generate_region_random_direction
from ultranest.stepfuncs import generate_differential_direction, generate_mixture_random_direction
import scipy.stats


def unitcube_line_intersection(ray_origin, ray_direction):
    r"""Compute intersection of a line (ray) and a unit box (0:1 in all axes).

    Based on
    http://www.iquilezles.org/www/articles/intersectors/intersectors.htm

    Parameters
    -----------
    ray_origin: array of vectors
        starting point of line
    ray_direction: vector
        line direction vector

    Returns
    --------
    tleft: array
        negative intersection point distance from ray\_origin in units in ray\_direction
    tright: array
        positive intersection point distance from ray\_origin in units in ray\_direction

    """
    # make sure ray starts inside the box
    assert (ray_origin >= 0).all(), ray_origin
    assert (ray_origin <= 1).all(), ray_origin
    assert ((ray_direction**2).sum()**0.5 > 1e-200).all(), ray_direction

    # step size
    with np.errstate(divide='ignore', invalid='ignore'):
        m = 1. / ray_direction
        n = m * (ray_origin - 0.5)
        k = np.abs(m) * 0.5
        # line coordinates of intersection
        # find first intersecting coordinate
        t1 = -n - k
        t2 = -n + k
        return np.nanmax(t1, axis=1), np.nanmin(t2, axis=1)

def diagnose_move_distances(region, ustart, ufinal):
    """Compares random walk travel distance to MLFriends radius.

    Compares in whitened space (t-space), the L2 norm between final
    point and starting point to the MLFriends bootstrapped radius.

    Parameters
    ----------
    region: MLFriends
        built region
    ustart: array
        starting positions
    ufinal: array
        final positions

    Returns
    -------
    far_enough: bool
        whether the distance is larger than the radius
    move_distance: float
        distance between start and final point in whitened space
    reference_distance: float
        MLFriends radius
    """
    assert ustart.shape == ufinal.shape, (ustart.shape, ufinal.shape)
    tstart = region.transformLayer.transform(ustart)
    tfinal = region.transformLayer.transform(ufinal)
    d2 = ((tstart - tfinal)**2).sum(axis=1)
    far_enough = d2 > region.maxradiussq

    return far_enough, [d2**0.5, region.maxradiussq**0.5]

class GenericPopulationSampler():
    def plot(self, filename):
        """Plot sampler statistics.

        Parameters
        -----------
        filename: str
            Stores plot into ``filename`` and data into
            ``filename + ".txt.gz"``.
        """
        if len(self.logstat) == 0:
            return

        import matplotlib.pyplot as plt
        plt.figure(figsize=(10, 1 + 3 * len(self.logstat_labels)))
        for i, label in enumerate(self.logstat_labels):
            part = [entry[i] for entry in self.logstat]
            plt.subplot(len(self.logstat_labels), 1, 1 + i)
            plt.ylabel(label)
            plt.plot(part)
            x = []
            y = []
            for j in range(0, len(part), 20):
                x.append(j)
                y.append(np.mean(part[j:j + 20]))
            plt.plot(x, y)
            if np.min(part) > 0:
                plt.yscale('log')
        plt.savefig(filename, bbox_inches='tight')
        np.savetxt(filename + '.txt.gz', self.logstat,
                   header=','.join(self.logstat_labels), delimiter=',')
        plt.close()

    @property
    def mean_jump_distance(self):
        """Geometric mean jump distance."""
        if len(self.logstat) == 0:
            return np.nan
        return np.exp(np.average(
            np.log([entry[-1] + 1e-10 for entry in self.logstat]),
            weights=([entry[0] for entry in self.logstat])
        ))

    @property
    def far_enough_fraction(self):
        """Fraction of jumps exceeding reference distance."""
        if len(self.logstat) == 0:
            return np.nan
        return np.average(
            [entry[-2] for entry in self.logstat],
            weights=([entry[0] for entry in self.logstat])
        )

    def get_info_dict(self):
        return dict(
            num_logs=len(self.logstat),
            rejection_rate=1 - np.nanmean([entry[0] for entry in self.logstat]) if len(self.logstat) > 0 else np.nan,
            mean_scale=np.nanmean([entry[1] for entry in self.logstat]) if len(self.logstat) > 0 else np.nan,
            mean_nsteps=np.nanmean([entry[2] for entry in self.logstat]) if len(self.logstat) > 0 else np.nan,
            mean_distance=self.mean_jump_distance,
            frac_far_enough=self.far_enough_fraction,
            last_logstat=dict(zip(self.logstat_labels, self.logstat[-1] if len(self.logstat) > 1 else [np.nan] * len(self.logstat_labels)))
        )


    def print_diagnostic(self):
        """Print diagnostic of step sampler performance."""
        if len(self.logstat) == 0:
            print("diagnostic unavailable, no recorded steps found")
            return
        frac_farenough = self.far_enough_fraction
        average_distance = self.mean_jump_distance
        if frac_farenough < 0.5:
            advice = ': very fishy. Double nsteps and see if fraction and lnZ change)'
        elif frac_farenough < 0.66:
            advice = ': fishy. Double nsteps and see if fraction and lnZ change)'
        else:
            advice = ' (should be >50%)'
        print('step sampler diagnostic: jump distance %.2f (should be >1), far enough fraction: %.2f%% %s' % (
            average_distance, frac_farenough * 100, advice))

    def plot_jump_diagnostic_histogram(self, filename, **kwargs):
        """Plot jump diagnostic histogram."""
        if len(self.logstat) == 0:
            return
        import matplotlib.pyplot as plt
        plt.hist(np.log10([entry[-1] for entry in self.logstat]), **kwargs)
        ylo, yhi = plt.ylim()
        plt.vlines(self.mean_jump_distance, ylo, yhi)
        plt.ylim(ylo, yhi)
        plt.xlabel('log(relative step distance)')
        plt.ylabel('Frequency')
        plt.savefig(filename, bbox_inches='tight')
        plt.close()


[docs] class PopulationRandomWalkSampler(GenericPopulationSampler): """Vectorized Gaussian Random Walk sampler.""" def __init__( self, popsize, nsteps, generate_direction, scale, scale_adapt_factor=0.9, scale_min=1e-20, scale_max=20, log=False, logfile=None ): """Initialise. Parameters ---------- popsize: int number of walkers to maintain. this should be fairly large (~100), if too large you probably get memory issues Also, some results have to be discarded as the likelihood threshold increases. Observe the nested sampling efficiency. nsteps: int number of steps to take until the found point is accepted as independent. To find the right value, see :py:class:`ultranest.calibrator.ReactiveNestedCalibrator` generate_direction: function Function that gives proposal kernel shape, one of: :py:func:`ultranest.popstepsampler.generate_cube_oriented_direction` :py:func:`ultranest.popstepsampler.generate_cube_oriented_direction_scaled` :py:func:`ultranest.popstepsampler.generate_random_direction` :py:func:`ultranest.popstepsampler.generate_region_oriented_direction` :py:func:`ultranest.popstepsampler.generate_region_random_direction` scale: float initial guess for the proposal scaling factor scale_adapt_factor: float if 1, no adapting is done. if <1, the scale is increased if the acceptance rate is below 23.4%, or decreased if it is above, by *scale_adapt_factor*. scale_min: float lowest value allowed for scale, do not adapt down further scale_max: float highest value allowed for scale, do not adapt up further logfile: file where to print the current scaling factor and acceptance rate """ self.nsteps = nsteps self.nrejects = 0 self.scale = scale self.ncalls = 0 assert scale_adapt_factor <= 1 self.scale_adapt_factor = scale_adapt_factor self.scale_min = scale_min self.scale_max = scale_max self.log = log self.logfile = logfile self.logstat = [] self.logstat_labels = ['accept_rate', 'efficiency', 'scale', 'far_enough', 'mean_rel_jump'] self.prepared_samples = [] self.popsize = popsize self.generate_direction = generate_direction def __str__(self): """Return string representation.""" return 'PopulationRandomWalkSampler(popsize=%d, nsteps=%d, generate_direction=%s, scale=%.g)' % ( self.popsize, self.nsteps, self.generate_direction, self.scale)
[docs] def region_changed(self, Ls, region): """Act upon region changed. Currently unused.""" pass
def __next__( self, region, Lmin, us, Ls, transform, loglike, ndraw=10, plot=False, tregion=None, log=False ): """Sample a new live point. Parameters ---------- region: MLFriends object Region Lmin: float current log-likelihood threshold us: np.array((nlive, ndim)) live points Ls: np.array(nlive) loglikelihoods live points transform: function prior transform function loglike: function loglikelihood function ndraw: int not used plot: bool not used tregion: bool not used log: bool not used Returns ------- u: np.array(ndim) or None new point coordinates (None if not yet available) p: np.array(nparams) or None new point transformed coordinates (None if not yet available) L: float or None new point likelihood (None if not yet available) nc: int """ nlive, ndim = us.shape # fill if empty: if len(self.prepared_samples) == 0: # choose live points ilive = np.random.randint(0, nlive, size=self.popsize) allu = us[ilive,:] allp = None allL = Ls[ilive] nc = self.nsteps * self.popsize nrejects_expected = self.nrejects + self.nsteps * self.popsize * (1 - 0.234) for i in range(self.nsteps): # perturb walker population v = self.generate_direction(allu, region, self.scale) # compute intersection of u + t * v with unit cube tleft, tright = unitcube_line_intersection(allu, v) proposed_t = scipy.stats.truncnorm.rvs(tleft, tright, loc=0, scale=1).reshape((-1, 1)) proposed_u = allu + v * proposed_t mask_outside = ~np.logical_and(proposed_u > 0, proposed_u < 1).all(axis=1) assert not mask_outside.any(), proposed_u[mask_outside, :] proposed_p = transform(proposed_u) # accept if likelihood threshold exceeded proposed_L = loglike(proposed_p) mask_accept = proposed_L > Lmin self.nrejects += (~mask_accept).sum() allu[mask_accept,:] = proposed_u[mask_accept,:] if allp is None: del allp allp = proposed_p * np.nan allp[mask_accept,:] = proposed_p[mask_accept,:] allL[mask_accept] = proposed_L[mask_accept] assert np.isfinite(allp).all(), 'some walkers never moved! Double nsteps of PopulationRandomWalkSampler.' far_enough, (move_distance, reference_distance) = diagnose_move_distances(region, us[ilive[mask_accept],:], allu[mask_accept,:]) self.prepared_samples = list(zip(allu, allp, allL)) self.logstat.append([ mask_accept.mean(), 1 - (self.nrejects - (nrejects_expected - self.nsteps * self.popsize * (1 - 0.234))) / (self.nsteps * self.popsize), self.scale, self.nsteps, np.mean(far_enough), np.exp(np.mean(np.log(move_distance / reference_distance + 1e-10))) ]) if self.logfile: self.logfile.write("rescale\t%.4f\t%.4f\t%g\t%.4f%g\n" % self.logstat[-1]) # adapt slightly if self.nrejects > nrejects_expected and self.scale > self.scale_min: # lots of rejects, decrease scale self.scale *= self.scale_adapt_factor elif self.nrejects < nrejects_expected and self.scale < self.scale_max: self.scale /= self.scale_adapt_factor else: nc = 0 u, p, L = self.prepared_samples.pop(0) return u, p, L, nc
[docs] class PopulationSliceSampler(GenericPopulationSampler): """Vectorized slice/HARM sampler. Can revert until all previous steps have likelihoods allL above Lmin. Updates currentt, generation and allL, in-place. """ def __init__( self, popsize, nsteps, generate_direction, scale=1.0, scale_adapt_factor=0.9, log=False, logfile=None ): """Initialise. Parameters ---------- popsize: int number of walkers to maintain nsteps: int number of steps to take until the found point is accepted as independent. To find the right value, see :py:class:`ultranest.calibrator.ReactiveNestedCalibrator` generate_direction: function `(u, region, scale) -> v` function such as `generate_unit_directions`, which generates a random slice direction. scale: float initial guess scale for the length of the slice scale_adapt_factor: float smoothing factor for updating scale. if near 1, scale is barely updating, if near 0, the last slice length is used as a initial guess for the next. """ self.nsteps = nsteps self.nrejects = 0 self.scale = scale self.scale_adapt_factor = scale_adapt_factor self.allu = [] self.allL = [] self.currentt = [] self.currentv = [] self.currentp = [] self.generation = [] self.current_left = [] self.current_right = [] self.searching_left = [] self.searching_right = [] self.ringindex = 0 self.log = log self.logfile = logfile self.logstat = [] self.logstat_labels = ['accept_rate', 'efficiency', 'scale', 'far_enough', 'mean_rel_jump'] self.popsize = popsize self.generate_direction = generate_direction def __str__(self): """Return string representation.""" return 'PopulationSliceSampler(popsize=%d, nsteps=%d, generate_direction=%s, scale=%.g)' % ( self.popsize, self.nsteps, self.generate_direction, self.scale)
[docs] def region_changed(self, Ls, region): """Act upon region changed. Currently unused.""" # self.scale = region.us.std(axis=1).mean() if self.logfile: self.logfile.write("region-update\t%g\t%g\n" % (self.scale, region.us.std(axis=1).mean()))
def _setup(self, ndim): """Allocate arrays.""" self.allu = np.zeros((self.popsize, self.nsteps + 1, ndim)) + np.nan self.allL = np.zeros((self.popsize, self.nsteps + 1)) + np.nan self.currentt = np.zeros(self.popsize) + np.nan self.currentv = np.zeros((self.popsize, ndim)) + np.nan self.generation = np.zeros(self.popsize, dtype=int) - 1 self.current_left = np.zeros(self.popsize) self.current_right = np.zeros(self.popsize) self.searching_left = np.zeros(self.popsize, dtype=bool) self.searching_right = np.zeros(self.popsize, dtype=bool)
[docs] def setup_start(self, us, Ls, starting): """Initialize walker starting points. For iteration zero, randomly selects a live point as starting point. Parameters ---------- us: np.array((nlive, ndim)) live points Ls: np.array(nlive) loglikelihoods live points starting: np.array(nwalkers, dtype=bool) which walkers to initialize. """ if self.log: print("setting up:", starting) nlive = len(us) i = np.random.randint(nlive, size=starting.sum()) if not starting.all(): while starting[self.ringindex]: # if the one we are waiting for is being restarted, # we may as well pick the next one to wait for # because every other one is started from a random point # as well self.shift() self.allu[starting,0] = us[i] self.allL[starting,0] = Ls[i] self.generation[starting] = 0
@property def status(self): """Return compact string representation of the current status.""" s1 = ('G:' + ''.join(['%d' % g if g >= 0 else '_' for g in self.generation])) s2 = ('S:' + ''.join([ 'S' if not np.isfinite(self.currentt[i]) else 'L' if self.searching_left[i] else 'R' if self.searching_right[i] else 'B' for i in range(self.popsize)])) return s1 + ' ' + s2
[docs] def setup_brackets(self, mask_starting, region): """Pick starting direction and range for slice. Parameters ---------- region: MLFriends object Region mask_starting: np.array(nwalkers, dtype=bool) which walkers to set up. """ if self.log: print("starting brackets:", mask_starting) i_starting, = np.where(mask_starting) self.current_left[i_starting] = -self.scale self.current_right[i_starting] = self.scale self.searching_left[i_starting] = True self.searching_right[i_starting] = True self.currentt[i_starting] = 0 # choose direction for new slice self.currentv[i_starting,:] = self.generate_direction( self.allu[i_starting, self.generation[i_starting]], region)
def _setup_currentp(self, nparams): if self.log: print("setting currentp") self.currentp = np.zeros((self.popsize, nparams)) + np.nan
[docs] def advance(self, transform, loglike, Lmin, region): """Advance the walker population. Parameters ---------- transform: function prior transform function loglike: function loglikelihood function Lmin: float current log-likelihood threshold """ movable = self.generation < self.nsteps all_movable = movable.all() # print("moving ", movable.sum(), self.popsize) if all_movable: i = np.arange(self.popsize) args = [ self.allu[i, self.generation], self.allL[i, self.generation], # pass values directly self.currentt, self.currentv, self.current_left, self.current_right, self.searching_left, self.searching_right ] del i else: args = [ self.allu[movable, self.generation[movable]], self.allL[movable, self.generation[movable]], # this makes copies self.currentt[movable], self.currentv[movable], self.current_left[movable], self.current_right[movable], self.searching_left[movable], self.searching_right[movable] ] if self.log: print("evolve will advance:", movable) uorig = args[0].copy() ( ( currentt, currentv, current_left, current_right, searching_left, searching_right ), (success, unew, pnew, Lnew), nc ) = evolve(transform, loglike, Lmin, *args) if success.any(): far_enough, (move_distance, reference_distance) = diagnose_move_distances(region, uorig[success,:], unew) self.logstat.append([ success.mean(), self.scale, self.nsteps, np.mean(far_enough) if len(far_enough) > 0 else 0, np.exp(np.mean(np.log(move_distance / reference_distance + 1e-10))) if len(far_enough) > 0 else 0 ]) if self.logfile: self.logfile.write("rescale\t%.4f\t%.4f\t%g\t%.4f%g\n" % self.logstat[-1]) if self.log: print("movable", movable.shape, movable.sum(), success.shape) moved = submasks(movable, success) if self.log: print("evolve moved:", moved) self.generation[moved] += 1 if len(pnew) > 0: if len(self.currentp) == 0: self._setup_currentp(nparams=pnew.shape[1]) if self.log: print("currentp", self.currentp[moved,:].shape, pnew.shape) self.currentp[moved,:] = pnew # update with what we learned # print(currentu.shape, currentL.shape, success.shape, self.generation[movable]) self.allu[moved, self.generation[moved]] = unew self.allL[moved, self.generation[moved]] = Lnew if all_movable: # in this case, the values were directly overwritten pass else: self.currentt[movable] = currentt self.currentv[movable] = currentv self.current_left[movable] = current_left self.current_right[movable] = current_right self.searching_left[movable] = searching_left self.searching_right[movable] = searching_right return nc
[docs] def shift(self): """Update walker from which to pick next.""" # this is a ring buffer # shift index forward, wrapping around # this is better than copying memory around when a element is removed self.ringindex = (self.ringindex + 1) % self.popsize
def __next__( self, region, Lmin, us, Ls, transform, loglike, ndraw=10, plot=False, tregion=None, log=False ): """Sample a new live point. Parameters ---------- region: MLFriends object Region Lmin: float current log-likelihood threshold us: np.array((nlive, ndim)) live points Ls: np.array(nlive) loglikelihoods live points transform: function prior transform function loglike: function loglikelihood function ndraw: int not used plot: bool not used tregion: bool not used log: bool not used Returns ------- u: np.array(ndim) or None new point coordinates (None if not yet available) p: np.array(nparams) or None new point transformed coordinates (None if not yet available) L: float or None new point likelihood (None if not yet available) nc: int """ nlive, ndim = us.shape # initialize if len(self.allu) == 0: self._setup(ndim) step_back(Lmin, self.allL, self.generation, self.currentt) starting = self.generation < 0 if starting.any(): self.setup_start(us[Ls > Lmin], Ls[Ls > Lmin], starting) assert (self.generation >= 0).all(), self.generation # find those where bracket is undefined: mask_starting = ~np.isfinite(self.currentt) if mask_starting.any(): self.setup_brackets(mask_starting, region) if self.log: print(str(self), "(before)") nc = self.advance(transform, loglike, Lmin, region) if self.log: print(str(self), "(after)") # harvest top individual if possible if self.generation[self.ringindex] == self.nsteps: if self.log: print("have a candidate") u, p, L = self.allu[self.ringindex, self.nsteps, :].copy(), self.currentp[self.ringindex, :].copy(), self.allL[self.ringindex, self.nsteps].copy() assert np.isfinite(u).all(), u assert np.isfinite(p).all(), p self.generation[self.ringindex] = -1 self.currentt[self.ringindex] = np.nan self.allu[self.ringindex,:,:] = np.nan self.allL[self.ringindex,:] = np.nan # adjust guess length newscale = (self.current_right[self.ringindex] - self.current_left[self.ringindex]) / 2 self.scale = self.scale * 0.9 + 0.1 * newscale self.shift() return u, p, L, nc else: return None, None, None, nc
def slice_limit_to_unitcube(tleft, tright): """ return the slice limits as of the intersection between the slice and the unit cube boundaries parameters ---------- tleft: float Intersection of the unit cube with the slice in the negative direction tright: float Intersection of the unit cube with the slice in the positive direction Returns ------- (tleft_new,tright_new): tuple Positive and negative slice limits """ tleft_new, tright_new = tleft.copy(), tright.copy() return (tleft_new, tright_new) def slice_limit_to_scale(tleft, tright): """ return the slice limits as an interval of size `2*scale` or the intersection between the slice and the unit cube boundaries if the interval is larger than the unit cube boundaries. parameters ---------- tleft: float Intersection of the unit cube with the slice in the negative direction tright: float Intersection of the unit cube with the slice in the positive direction Returns ------- (tleft_new,tright_new): tuple Positive and negative slice limits """ tleft_new = np.fmax(tleft , -1. + np.zeros_like(tleft)) tright_new = np.fmin(tright , 1. + np.zeros_like(tright)) return (tleft_new, tright_new)
[docs] class PopulationSimpleSliceSampler(GenericPopulationSampler): """ Vectorized Slice sampler without stepping out procedure for quick look fits. Unlike `:py:class:PopulationSliceSampler`, in `:py:class:PopulationSimpleSliceSampler`, the likelihood is always called with the same number of points. Sliced are defined by the `:py:func:generate_direction` function on a interval defined around the current point. The centred interval has the width of the scale parameter, i.e, there is no stepping out procedure as in `:py:class:PopulationSliceSampler`. Slices are then shrink towards the current point until a point is found with a likelihood above the threshold. In the default case, i.e. `scale=None`, the slice width is defined as the intersection between itself and the unit cube. To improve the efficiency of the sampler, the slice can be reduced to an interval of size `2*scale` centred on the point. `scale` can be adapted with the `scale_adapt_factor` parameter based on the median distance between the current and the next point in a chains among all the chains. If the median distance is above `scale/adapt_slice_scale_target`, the scale is increased by `scale_adapt_factor`, and decreased otherwise. The `scale` parameter can also be jittered by a user supplied function `:py:func:scale_jitter_func` to counter balance the effect of a strong adaptation. In the case `scale!=None`, the detailed balance is not guaranteed, so this sampler should be use with caution. Multiple (`popsize`) slice sampling chains are run independently and in parallel. In that case, we read points as if they were the next selected each after the other. For a points to update the slice, it needs to be still in the part of the slices searched after the first point have been read. In that case, we update as normal, otherwise we discard the point. """ def __init__( self, popsize, nsteps, generate_direction, scale_adapt_factor=1.0, adapt_slice_scale_target=2.0, scale=1.0, scale_jitter_func=None,slice_limit=slice_limit_to_unitcube, max_it=100,shrink_factor=1.0): """Initialise. Parameters ---------- popsize: int number of walkers to maintain. nsteps: int number of steps to take until the found point is accepted as independent. To calibrate, try several runs with increasing nsteps (doubling). The ln(Z) should become stable at some value. generate_direction: function Function that gives proposal kernel shape, one of: :py:func:`ultranest.popstepsampler.generate_random_direction` :py:func:`ultranest.popstepsampler.generate_region_oriented_direction` :py:func:`ultranest.popstepsampler.generate_region_random_direction` :py:func:`ultranest.popstepsampler.generate_differential_direction` :py:func:`ultranest.popstepsampler.generate_mixture_random_direction` :py:func:`ultranest.popstepsampler.generate_cube_oriented_direction` -> no adaptation in that case :py:func:`ultranest.popstepsampler.generate_cube_oriented_direction_scaled` -> no adaptation in that case scale: float initial guess for the slice width. scale_jitter_func: function User supplied function to multiply the `scale` by a random factor. For example, :py:func:`lambda : scipy.stats.truncnorm.rvs(-0.5, 5., loc=0, scale=1)+1.` scale_adapt_factor: float adaptation of `scale`. If 1: no adaptation. if <1, the scale is increased/decreased by this factor if the final slice length is shorter/longer than the `adapt_slice_scale_target*scale`. adapt_slice_scale_target: float Targeted ratio of the median distance between slice mid and final point among all chains of `scale`. Default: 2.0. Higher values are more conservative, lower values are faster. slice_limit: function Function setting the initial slice upper and lower bound. The default is `:py:func:slice_limit_to_unitcube` which defines the slice limit as the intersection between the slice and the unit cube. An alternative when the `scale` is used is `:py:func:slice_limit_to_scale` which defines the slice limit as an interval of size `2*scale`. This function should either return a copy of the `tleft` and `tright` arguments or new arrays of the same shape. max_it: int maximum number of iterations to find a point on the slice. If the maximum number of iterations is reached, the current point is returned as the next one. shrink_factor: float For standard slice sampling shrinking, `shrink_factor=1`, the slice bound is updated to the last rejected point. Setting `shrink_factor>1` aggressively accelerates the shrinkage, by updating the new slice bound to `1/shrink_factor` of the distance between the current point and rejected point. """ self.nsteps = nsteps self.max_it = max_it self.nrejects = 0 self.generate_direction = generate_direction self.scale_adapt_factor = scale_adapt_factor self.ncalls = 0 self.discarded = 0 self.shrink_factor = shrink_factor assert shrink_factor>=1.0, "The shrink factor should be greater than 1.0 to be efficient" self.scale = float(scale) self.adapt_slice_scale_target = adapt_slice_scale_target if scale_jitter_func is None: self.scale_jitter_func= lambda : 1. else: self.scale_jitter_func= scale_jitter_func self.prepared_samples = [] self.popsize = popsize self.slice_limit = slice_limit self.logstat = [] self.logstat_labels = ['accept_rate', 'efficiency', 'scale', 'far_enough', 'mean_rel_jump'] def __str__(self): """Return string representation.""" return 'PopulationSimpleSliceSampler(popsize=%d, nsteps=%d, generate_direction=%s, scale=%.g)' % ( self.popsize, self.nsteps, self.generate_direction, self.scale)
[docs] def region_changed(self, Ls, region): """Act upon region changed. Currently unused.""" pass
def __next__( self, region, Lmin, us, Ls, transform, loglike, ndraw=10, plot=False, tregion=None, log=False, test=False ): """Sample a new live point. Parameters ---------- region: MLFriends object Region Lmin: float current log-likelihood threshold us: np.array((nlive, ndim)) live points Ls: np.array(nlive) loglikelihoods live points transform: function prior transform function loglike: function loglikelihood function ndraw: int not used plot: bool not used tregion: bool not used log: bool not used test: bool In case of test of the reversibility of the sampler, the points drawn from the live points needs to be deterministic. This parameters is ensuring that. Returns ------- u: np.array(ndim) or None new point coordinates (None if not yet available) p: np.array(nparams) or None new point transformed coordinates (None if not yet available) L: float or None new point likelihood (None if not yet available) nc: int """ nlive, ndim = us.shape # fill if empty: if len(self.prepared_samples) == 0: # choose live points ilive = np.random.randint(0, nlive, size=self.popsize) allu = np.array(us[ilive,:]) if not test else np.array(us) allp = np.zeros((self.popsize, ndim)) allL = np.array(Ls[ilive]) nc = 0 n_discarded = 0 interval_final = 0. for k in range(self.nsteps): # Defining scale jitter factor_scale = self.scale_jitter_func() # Defining slice direction v = self.generate_direction(allu, region, scale = 1.0)*self.scale*factor_scale # limite of the slice based on the unit cube boundaries tleft_unitcube, tright_unitcube = unitcube_line_intersection(allu, v) # Defining bound of the slice # Bounds for each points and likelihood calls are identical initially # Slice bounds for each likelihood call tleft_worker, tright_worker = self.slice_limit(tleft_unitcube,tright_unitcube) # Slice bounds for each points tleft, tright = self.slice_limit(tleft_unitcube,tright_unitcube) # Index of the workers working concurrently worker_running = np.arange(0,self.popsize,1,dtype=int) # Status indicating if a points has already find its next position status = np.zeros(self.popsize,dtype=int) # one for success, zero for running # Loop until each points has found its next position or we reached 100 iterations for it in range(self.max_it): # Sampling points on the slices slice_position = np.random.uniform(size=(self.popsize,)) t = tleft_worker+(tright_worker-tleft_worker)*slice_position points = allu[worker_running,:] v_worker = v[worker_running,:] proposed_u = points+t.reshape((-1,1))*v_worker proposed_p = transform(proposed_u) proposed_L = loglike(proposed_p) nc += self.popsize # Updating the pool of points based on the newly sampled points tleft,tright,worker_running,status,allu,allL,allp,n_discarded_it = update_vectorised_slice_sampler(\ t,tleft,tright,proposed_L,proposed_u,proposed_p,worker_running,status,Lmin,self.shrink_factor,\ allu,allL,allp,self.popsize) n_discarded += n_discarded_it # Update of the limits of the slices tleft_worker = tleft[worker_running] tright_worker = tright[worker_running] if not np.any(status==0): break # Record of the final interval on theta for scale adaptation interval_final += np.median(tright-tleft) interval_final = interval_final/self.nsteps self.discarded += n_discarded self.ncalls += nc assert np.array([p!=np.zeros(ndim) for p in allp]).all(), 'some walkers never moved! Double nsteps of PopulationSimpleSliceSampler.' far_enough, (move_distance, reference_distance) = diagnose_move_distances(region, us[ilive,:], allu) self.prepared_samples = list(zip(allu, allp, allL)) self.logstat.append([ self.popsize/nc, self.scale, # will always be 1. in the default case self.nsteps, np.mean(far_enough) if len(far_enough) > 0 else 0, np.exp(np.mean(np.log(move_distance / reference_distance + 1e-10))) if len(far_enough) > 0 else 0 ]) # Scale adaptation such that the final interval is # half the scale. There may be better things to do # here, but it seems to work. if interval_final>=1./self.adapt_slice_scale_target: self.scale *= 1./self.scale_adapt_factor else: self.scale *= self.scale_adapt_factor #print("percentage of throws %.3f\n\n"%((self.throwed/self.ncalls)*100.)) else: nc = 0 u, p, L = self.prepared_samples.pop(0) return u, p, L, nc
__all__ = [ "generate_cube_oriented_direction", "generate_cube_oriented_direction_scaled", "generate_random_direction", "generate_region_oriented_direction", "generate_region_random_direction", "PopulationRandomWalkSampler", "PopulationSliceSampler","PopulationSimpleSliceSampler"]