Source code for ultranest.plot

# noqa: D400 D205
"""
Plotting utilities
------------------

"""

from __future__ import division, print_function

import logging
import types
import warnings

import matplotlib.pyplot as pl
import matplotlib.pyplot as plt
import numpy
import numpy as np
import scipy.stats
# from matplotlib.colors import LinearSegmentedColormap, colorConverter
from matplotlib.ticker import MaxNLocator, NullLocator, ScalarFormatter
from six.moves import range

from .utils import quantile as _quantile
from .utils import resample_equal

try:
    str_type = types.StringTypes
    float_type = types.FloatType
    int_type = types.IntType
except Exception:
    str_type = str
    float_type = float
    int_type = int

import corner

__all__ = ["runplot", "cornerplot", "traceplot", "PredictionBand"]


[docs] def cornerplot( results, min_weight=1e-4, with_legend=True, logger=None, levels=[0.9973, 0.9545, 0.6827, 0.3934], plot_datapoints=False, plot_density=False, show_titles=True, quiet=True, contour_kwargs=dict(linestyles=['-','-.',':','--'], colors=['navy','navy','navy','purple']), color='purple', quantiles=[0.15866, 0.5, 0.8413], **corner_kwargs ): """Make a healthy corner plot with corner. Essentially does:: paramnames = results['paramnames'] data = results['weighted_samples']['points'] weights = results['weighted_samples']['weights'] return corner.corner( results['weighted_samples']['points'], weights=results['weighted_samples']['weights'], labels=results['paramnames']) Parameters ---------- min_weight: float cut off low-weight posterior points. Avoids meaningless stragglers when plot_datapoints is True. with_legend: bool whether to add a legend to show meaning of the lines. color : str ``matplotlib`` style color for all histograms. plot_density : bool Draw the density colormap. plot_contours : bool Draw the contours. show_titles : bool Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument. quiet : bool If true, suppress warnings for small datasets. contour_kwargs : dict Any additional keyword arguments to pass to the `contour` method. quantiles: list fractional quantiles to show on the 1-D histograms as vertical dashed lines. **corner_kwargs: dict Any remaining keyword arguments are sent to :func:`corner.corner`. Returns ------- fig : `~matplotlib.figure.Figure` The ``matplotlib`` figure instance for the corner plot. """ paramnames = results['paramnames'] data = np.array(results['weighted_samples']['points']) weights = np.array(results['weighted_samples']['weights']) cumsumweights = np.cumsum(weights) mask = cumsumweights > min_weight if mask.sum() == 1: if logger is not None: warn = 'Posterior is still concentrated in a single point:' for i, p in enumerate(paramnames): v = results['samples'][mask,i] warn += "\n" + ' %-20s: %s' % (p, v) logger.warning(warn) logger.info('Try running longer.') return # monkey patch to disable a useless warning oldfunc = logging.warning logging.warning = lambda *args, **kwargs: None fig = corner.corner( data[mask,:], weights=weights[mask], labels=paramnames, show_titles=show_titles, quiet=quiet, plot_datapoints=plot_datapoints, plot_density=plot_density, levels=levels, quantiles=quantiles, contour_kwargs=contour_kwargs, color=color, **corner_kwargs ) # Create legend handles if with_legend and data.shape[1] > 1: legend_handles = [ plt.Line2D( [0], [0], linestyle='--', color=color, label='%.1f%% marginal' % (100 * (quantiles[-1] - quantiles[0]))), ] + [plt.Line2D( [0], [0], linestyle=ls, color=linecolor, label='%.1f%%' % (100 * level)) for ls, linecolor, level in zip( contour_kwargs.get('linestyles', [])[::-1], contour_kwargs.get('colors', [color] * 100)[::-1], levels[::-1]) ] if len(legend_handles) == len(levels) + 1 and len(legend_handles) > 0: plt.legend( title='credible prob level', handles=legend_handles, loc='lower right', bbox_to_anchor=(1.01,1.2), frameon=False ) logging.warning = oldfunc return fig
def highest_density_interval_from_samples(xsamples, xlo=None, xhi=None, probability_level=0.68): """ Compute the highest density interval (HDI) from posterior samples. Parameters ---------- xsamples : array_like The posterior samples from which to compute the HDI. xlo : float or None, optional Lower boundary limiting the space. Default is None. xhi : float or None, optional Upper boundary limiting the space. Default is None. probability_level : float, optional The desired probability level for the HDI. Default is 0.68. Returns ------- x_MAP: float maximum a posteriori (MAP) estimate. xerrlo: float lower uncertainty (lower HDI bound minus x_MAP). xerrhi: float upper uncertainty (x_MAP minus upper HDI bound). Notes ----- The function starts at the highest density point and accumulates neighboring points until the specified probability level is reached. If `xlo` or `xhi` is provided, the HDI is constrained within these bounds. Requires getdist to be installed for a kernel density estimation. For uniform distributions, this function will give unpredictable results for the MAP. Examples -------- >>> xsamples = np.random.normal(loc=0, scale=1, size=100000) >>> hdi = highest_density_interval_from_samples(xsamples) >>> print('x = %.1f + %.2f - %.2f' % hdi) x = 0.0 + 1.02 - 0.96 """ import getdist.chains from getdist.mcsamples import MCSamples getdist.chains.print_load_details = False samples = MCSamples( samples=xsamples, names=['x'], ranges={'x':[xlo,xhi]}, settings=dict(mult_bias_correction_order=1)) samples.raise_on_bandwidth_errors = True density_bounded = samples.get1DDensityGridData('x') x = density_bounded.x y = density_bounded.P / np.sum(density_bounded.P) # Sort the y values in descending order sorted_indices = np.argsort(y)[::-1] # define MAP as the peak. This works well if the peak is declining to both sides MAP = x[sorted_indices[0]] total_probability = y[sorted_indices[0]] i_lo = sorted_indices[0] i_hi = sorted_indices[0] for i in sorted_indices[1:]: # Add the current probability to the total i_lo = min(i_lo, i) i_hi = max(i_hi, i) total_probability = y[i_lo:i_hi + 1].sum() # Check if the total probability exceeds or equals the desired level if total_probability >= probability_level: break x_lo = x[i_lo] x_hi = x[i_hi] return MAP, MAP - x_lo, x_hi - MAP
[docs] class PredictionBand: """Plot bands of model predictions as calculated from a chain. call add(y) to add predictions from each chain point .. testsetup:: import numpy chain = numpy.random.uniform(size=(20, 2)) .. testcode:: x = numpy.linspace(0, 1, 100) band = PredictionBand(x) for c in chain: band.add(c[0] * x + c[1]) # add median line. As an option a matplotlib ax can be given. band.line(color='k') # add 1 sigma quantile band.shade(color='k', alpha=0.3) # add wider quantile band.shade(q=0.01, color='gray', alpha=0.1) plt.show() To plot onto a specific axis, use `band.line(..., ax=myaxis)`. Parameters ---------- x: array The independent variable """ def __init__(self, x, shadeargs={}, lineargs={}): """Initialise with independent variable *x*.""" self.x = x self.ys = [] self.shadeargs = shadeargs self.lineargs = lineargs
[docs] def add(self, y): """Add a possible prediction *y*.""" self.ys.append(y)
[docs] def set_shadeargs(self, **kwargs): """Set matplotlib style for shading.""" self.shadeargs = kwargs
[docs] def set_lineargs(self, **kwargs): """Set matplotlib style for line.""" self.lineargs = kwargs
[docs] def get_line(self, q=0.5): """Over prediction space x, get quantile *q*. Default is median.""" if not 0 <= q <= 1: raise ValueError("quantile q must be between 0 and 1, not %s" % q) assert len(self.ys) > 0, self.ys return scipy.stats.mstats.mquantiles(self.ys, q, axis=0)[0]
[docs] def shade(self, q=0.341, ax=None, **kwargs): """Plot a shaded region between 0.5-q and 0.5+q, by default 1 sigma.""" if not 0 <= q <= 0.5: raise ValueError("quantile distance from the median, q, must be between 0 and 0.5, not %s. For a 99%% quantile range, use q=0.48." % q) shadeargs = dict(self.shadeargs) shadeargs.update(kwargs) lo = self.get_line(0.5 - q) hi = self.get_line(0.5 + q) if ax is None: ax = plt return ax.fill_between(self.x, lo, hi, **shadeargs)
[docs] def line(self, ax=None, **kwargs): """Plot the median curve.""" lineargs = dict(self.lineargs) lineargs.update(kwargs) mid = self.get_line(0.5) if ax is None: ax = plt return ax.plot(self.x, mid, **lineargs)
# the following function is taken from https://github.com/joshspeagle/dynesty/blob/master/dynesty/plotting.py # Copyright (c) 2017 - Present: Josh Speagle and contributors. # Copyright (c) 2014 - 2017: Kyle Barbary and contributors. # https://github.com/joshspeagle/dynesty/blob/master/LICENSE
[docs] def runplot(results, span=None, logplot=False, kde=True, nkde=1000, color='blue', plot_kwargs=None, label_kwargs=None, lnz_error=True, lnz_truth=None, truth_color='red', truth_kwargs=None, max_x_ticks=8, max_y_ticks=3, use_math_text=True, mark_final_live=True, fig=None ): """Plot live points, ln(likelihood), ln(weight), and ln(evidence) vs. ln(prior volume). Parameters ---------- results : dynesty.results.Results instance dynesty.results.Results instance from a nested sampling run. span : iterable with shape (4,), optional A list where each element is either a length-2 tuple containing lower and upper bounds *or* a float from `(0., 1.]` giving the fraction below the maximum. If a fraction is provided, the bounds are chosen to be equal-tailed. An example would be:: span = [(0., 10.), 0.001, 0.2, (5., 6.)] Default is `(0., 1.05 * max(data))` for each element. logplot : bool, optional Whether to plot the evidence on a log scale. Default is `False`. kde : bool, optional Whether to use kernel density estimation to estimate and plot the PDF of the importance weights as a function of log-volume (as opposed to the importance weights themselves). Default is `True`. nkde : int, optional The number of grid points used when plotting the kernel density estimate. Default is `1000`. color : str or iterable with shape (4,), optional A `~matplotlib`-style color (either a single color or a different value for each subplot) used when plotting the lines in each subplot. Default is `'blue'`. plot_kwargs : dict, optional Extra keyword arguments that will be passed to `plot`. label_kwargs : dict, optional Extra keyword arguments that will be sent to the `~matplotlib.axes.Axes.set_xlabel` and `~matplotlib.axes.Axes.set_ylabel` methods. lnz_error : bool, optional Whether to plot the 1, 2, and 3-sigma approximate error bars derived from the ln(evidence) error approximation over the course of the run. Default is True. lnz_truth : float, optional A reference value for the evidence that will be overplotted on the evidence subplot if provided. truth_color : str or iterable with shape (ndim,), optional A `~matplotlib`-style color used when plotting `lnz_truth`. Default is `'red'`. truth_kwargs : dict, optional Extra keyword arguments that will be used for plotting `lnz_truth`. max_x_ticks : int, optional Maximum number of ticks allowed for the x axis. Default is `8`. max_y_ticks : int, optional Maximum number of ticks allowed for the y axis. Default is `4`. use_math_text : bool, optional Whether the axis tick labels for very large/small exponents should be displayed as powers of 10 rather than using `e`. Default is `False`. mark_final_live : bool, optional Whether to indicate the final addition of recycled live points (if they were added to the resulting samples) using a dashed vertical line. Default is `True`. fig : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`), optional If provided, overplot the run onto the provided figure. Otherwise, by default an internal figure is generated. Returns ------- runplot : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`) Output summary plot. """ # Initialize values. if label_kwargs is None: label_kwargs = dict() if plot_kwargs is None: plot_kwargs = dict() if truth_kwargs is None: truth_kwargs = dict() # Set defaults. plot_kwargs['linewidth'] = plot_kwargs.get('linewidth', 5) plot_kwargs['alpha'] = plot_kwargs.get('alpha', 0.7) truth_kwargs['linestyle'] = truth_kwargs.get('linestyle', 'solid') truth_kwargs['linewidth'] = truth_kwargs.get('linewidth', 3) # Extract results. niter = results['niter'] # number of iterations logvol = results['logvol'] # ln(prior volume) logl = results['logl'] - max(results['logl']) # ln(normalized likelihood) logwt = results['logwt'] - results['logz'][-1] # ln(importance weight) logz = results['logz'] # ln(evidence) logzerr = results['logzerr'] # error in ln(evidence) weights = results['weights'] logzerr[~np.isfinite(logzerr)] = 0. nsamps = len(logwt) # number of samples # Check whether the run was "static" or "dynamic". try: nlive = results['samples_n'] mark_final_live = False except Exception: nlive = np.ones(niter) * results['nlive'] if nsamps - niter == results['nlive']: nlive_final = np.arange(1, results['nlive'] + 1)[::-1] nlive = np.append(nlive, nlive_final) # Check if the final set of live points were added to the results. if mark_final_live: if nsamps - niter == results['nlive']: live_idx = niter else: warnings.warn("The number of iterations and samples differ " "by an amount that isn't the number of final " "live points. `mark_final_live` has been disabled.", stacklevel=3) mark_final_live = False # Determine plotting bounds for each subplot. data = [nlive, np.exp(logl), weights, logz if logplot else np.exp(logz)] kde = kde and (weights * len(logvol) > 0.1).sum() > 10 if kde: try: # from scipy.ndimage import gaussian_filter as norm_kde from scipy.stats import gaussian_kde # Derive kernel density estimate. wt_kde = gaussian_kde(resample_equal(-logvol, weights)) # KDE logvol_new = np.linspace(logvol[0], logvol[-1], nkde) # resample data[2] = wt_kde.pdf(-logvol_new) # evaluate KDE PDF except ImportError: kde = False if span is None: span = [(0., 1.05 * max(d)) for d in data] no_span = True else: no_span = False span = list(span) if len(span) != 4: raise ValueError("More bounds provided in `span` than subplots!") for i, _ in enumerate(span): try: ymin, ymax = span[i] except Exception: span[i] = (max(data[i]) * span[i], max(data[i])) if lnz_error and no_span: if logplot: zspan = (logz[-1] - 10.3 * 3. * logzerr[-1], logz[-1] + 1.3 * 3. * logzerr[-1]) else: zspan = (0., 1.05 * np.exp(logz[-1] + 3. * logzerr[-1])) span[3] = zspan # Setting up default plot layout. if fig is None: fig, axes = pl.subplots(4, 1, figsize=(16, 16)) xspan = [(0., -min(logvol)) for _ax in axes] yspan = span else: fig, axes = fig try: axes.reshape(4, 1) except Exception: raise ValueError("Provided axes do not match the required shape " "for plotting samples.") # If figure is provided, keep previous bounds if they were larger. xspan = [ax.get_xlim() for ax in axes] yspan = [ax.get_ylim() for ax in axes] # One exception: if the bounds are the plotting default `(0., 1.)`, # overwrite them. xspan = [t if t != (0., 1.) else (None, None) for t in xspan] yspan = [t if t != (0., 1.) else (None, None) for t in yspan] # Set up bounds for plotting. for i in range(4): if xspan[i][0] is None: xmin = None else: xmin = min(0., xspan[i][0]) if xspan[i][1] is None: xmax = -min(logvol) else: xmax = max(-min(logvol), xspan[i][1]) if yspan[i][0] is None: ymin = None else: ymin = min(span[i][0], yspan[i][0]) if yspan[i][1] is None: ymax = span[i][1] else: ymax = max(span[i][1], yspan[i][1]) axes[i].set_xlim([xmin, xmax]) axes[i].set_ylim([ymin, ymax]) # Plotting. labels = ['Live Points', 'Likelihood\n(normalized)', 'Importance\nWeight', 'Evidence'] if kde: labels[2] += ' PDF' for i, d in enumerate(data): # Establish axes. ax = axes[i] # Set color(s)/colormap(s). if isinstance(color, str_type): c = color else: c = color[i] # Setup axes. if max_x_ticks == 0: ax.xaxis.set_major_locator(NullLocator()) else: ax.xaxis.set_major_locator(MaxNLocator(max_x_ticks)) if max_y_ticks == 0: ax.yaxis.set_major_locator(NullLocator()) else: ax.yaxis.set_major_locator(MaxNLocator(max_y_ticks)) # Label axes. sf = ScalarFormatter(useMathText=use_math_text) ax.yaxis.set_major_formatter(sf) ax.set_xlabel(r"$-\ln X$", **label_kwargs) ax.set_ylabel(labels[i], **label_kwargs) # Plot run. if logplot and i == 3: ax.plot(-logvol, d, color=c, **plot_kwargs) yspan = [ax.get_ylim() for _ax in axes] elif kde and i == 2: ax.plot(-logvol_new, d, color=c, **plot_kwargs) else: ax.plot(-logvol, d, color=c, **plot_kwargs) if i == 3 and lnz_error: if logplot: mask = logz >= ax.get_ylim()[0] - 10 [ax.fill_between(-logvol[mask], (logz + s * logzerr)[mask], (logz - s * logzerr)[mask], color=c, alpha=0.2) for s in range(1, 4)] else: [ax.fill_between(-logvol, np.exp(logz + s * logzerr), np.exp(logz - s * logzerr), color=c, alpha=0.2) for s in range(1, 4)] # Mark addition of final live points. if mark_final_live: ax.axvline(-logvol[live_idx], color=c, ls="dashed", lw=2, **plot_kwargs) if i == 0: ax.axhline(live_idx, color=c, ls="dashed", lw=2, **plot_kwargs) # Add truth value(s). if i == 3 and lnz_truth is not None: if logplot: ax.axhline(lnz_truth, color=truth_color, **truth_kwargs) else: ax.axhline(np.exp(lnz_truth), color=truth_color, **truth_kwargs) return fig, axes
[docs] def traceplot(results, span=None, quantiles=[0.025, 0.5, 0.975], smooth=0.02, post_color='blue', post_kwargs=None, kde=True, nkde=1000, trace_cmap='plasma', trace_color=None, trace_kwargs=None, connect=False, connect_highlight=10, connect_color='red', connect_kwargs=None, max_n_ticks=5, use_math_text=False, labels=None, label_kwargs=None, show_titles=False, title_fmt=".2f", title_kwargs=None, truths=None, truth_color='red', truth_kwargs=None, verbose=False, fig=None): """Plot traces and marginalized posteriors for each parameter. Parameters ---------- results : `~dynesty.results.Results` instance A `~dynesty.results.Results` instance from a nested sampling run. **Compatible with results derived from** `nestle <http://kylebarbary.com/nestle/>`_. span : iterable with shape (ndim,), optional A list where each element is either a length-2 tuple containing lower and upper bounds or a float from `(0., 1.]` giving the fraction of (weighted) samples to include. If a fraction is provided, the bounds are chosen to be equal-tailed. An example would be:: span = [(0., 10.), 0.95, (5., 6.)] Default is `0.999999426697` (5-sigma credible interval) for each parameter. quantiles : iterable, optional A list of fractional quantiles to overplot on the 1-D marginalized posteriors as vertical dashed lines. Default is `[0.025, 0.5, 0.975]` (the 95%/2-sigma credible interval). smooth : float or iterable with shape (ndim,), optional The standard deviation (either a single value or a different value for each subplot) for the Gaussian kernel used to smooth the 1-D marginalized posteriors, expressed as a fraction of the span. Default is `0.02` (2% smoothing). If an integer is provided instead, this will instead default to a simple (weighted) histogram with `bins=smooth`. post_color : str or iterable with shape (ndim,), optional A `~matplotlib`-style color (either a single color or a different value for each subplot) used when plotting the histograms. Default is `'blue'`. post_kwargs : dict, optional Extra keyword arguments that will be used for plotting the marginalized 1-D posteriors. kde : bool, optional Whether to use kernel density estimation to estimate and plot the PDF of the importance weights as a function of log-volume (as opposed to the importance weights themselves). Default is `True`. nkde : int, optional The number of grid points used when plotting the kernel density estimate. Default is `1000`. trace_cmap : str or iterable with shape (ndim,), optional A `~matplotlib`-style colormap (either a single colormap or a different colormap for each subplot) used when plotting the traces, where each point is colored according to its weight. Default is `'plasma'`. trace_color : str or iterable with shape (ndim,), optional A `~matplotlib`-style color (either a single color or a different color for each subplot) used when plotting the traces. This overrides the `trace_cmap` option by giving all points the same color. Default is `None` (not used). trace_kwargs : dict, optional Extra keyword arguments that will be used for plotting the traces. connect : bool, optional Whether to draw lines connecting the paths of unique particles. Default is `False`. connect_highlight : int or iterable, optional If `connect=True`, highlights the paths of a specific set of particles. If an integer is passed, :data:`connect_highlight` random particle paths will be highlighted. If an iterable is passed, then the particle paths corresponding to the provided indices will be highlighted. connect_color : str, optional The color of the highlighted particle paths. Default is `'red'`. connect_kwargs : dict, optional Extra keyword arguments used for plotting particle paths. max_n_ticks : int, optional Maximum number of ticks allowed. Default is `5`. use_math_text : bool, optional Whether the axis tick labels for very large/small exponents should be displayed as powers of 10 rather than using `e`. Default is `False`. labels : iterable with shape (ndim,), optional A list of names for each parameter. If not provided, the default name used when plotting will follow :math:`x_i` style. label_kwargs : dict, optional Extra keyword arguments that will be sent to the `~matplotlib.axes.Axes.set_xlabel` and `~matplotlib.axes.Axes.set_ylabel` methods. show_titles : bool, optional Whether to display a title above each 1-D marginalized posterior showing the 0.5 quantile along with the upper/lower bounds associated with the 0.025 and 0.975 (95%/2-sigma credible interval) quantiles. Default is `True`. title_fmt : str, optional The format string for the quantiles provided in the title. Default is `'.2f'`. title_kwargs : dict, optional Extra keyword arguments that will be sent to the `~matplotlib.axes.Axes.set_title` command. truths : iterable with shape (ndim,), optional A list of reference values that will be overplotted on the traces and marginalized 1-D posteriors as solid horizontal/vertical lines. Individual values can be exempt using `None`. Default is `None`. truth_color : str or iterable with shape (ndim,), optional A `~matplotlib`-style color (either a single color or a different value for each subplot) used when plotting `truths`. Default is `'red'`. truth_kwargs : dict, optional Extra keyword arguments that will be used for plotting the vertical and horizontal lines with `truths`. verbose : bool, optional Whether to print the values of the computed quantiles associated with each parameter. Default is `False`. fig : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`), optional If provided, overplot the traces and marginalized 1-D posteriors onto the provided figure. Otherwise, by default an internal figure is generated. Returns ------- traceplot : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`) Output trace plot. """ # Initialize values. if title_kwargs is None: title_kwargs = dict() if label_kwargs is None: label_kwargs = dict() if trace_kwargs is None: trace_kwargs = dict() if connect_kwargs is None: connect_kwargs = dict() if post_kwargs is None: post_kwargs = dict() if truth_kwargs is None: truth_kwargs = dict() # Set defaults. connect_kwargs['alpha'] = connect_kwargs.get('alpha', 0.7) post_kwargs['alpha'] = post_kwargs.get('alpha', 0.6) trace_kwargs['s'] = trace_kwargs.get('s', 3) truth_kwargs['linestyle'] = truth_kwargs.get('linestyle', 'solid') truth_kwargs['linewidth'] = truth_kwargs.get('linewidth', 2) # Extract weighted samples. samples = results['samples'] logvol = results['logvol'] weights = results['weights'] wts = weights kde = kde and (weights * len(logvol) > 0.1).sum() > 10 if kde: try: from scipy.ndimage import gaussian_filter as norm_kde from scipy.stats import gaussian_kde # Derive kernel density estimate. wt_kde = gaussian_kde(resample_equal(-logvol, weights)) # KDE logvol_grid = np.linspace(logvol[0], logvol[-1], nkde) # resample wt_grid = wt_kde.pdf(-logvol_grid) # evaluate KDE PDF wts = np.interp(-logvol, -logvol_grid, wt_grid) # interpolate except ImportError: kde = False # Deal with 1D results. A number of extra catches are also here # in case users are trying to plot other results besides the `Results` # instance generated by `dynesty`. samples = np.atleast_1d(samples) if len(samples.shape) == 1: samples = np.atleast_2d(samples) else: assert len(samples.shape) == 2, "Samples must be 1- or 2-D." samples = samples.T assert samples.shape[0] <= samples.shape[1], "There are more dimensions than samples!" ndim, nsamps = samples.shape # Check weights. if weights.ndim != 1: raise ValueError("Weights must be 1-D.") if nsamps != weights.shape[0]: raise ValueError("The number of weights and samples disagree!") # Check ln(volume). if logvol.ndim != 1: raise ValueError("Ln(volume)'s must be 1-D.") if nsamps != logvol.shape[0]: raise ValueError("The number of ln(volume)'s and samples disagree!") # Check sample IDs. if connect: try: samples_id = results['samples_id'] uid = np.unique(samples_id) except Exception: raise ValueError("Sample IDs are not defined!") try: ids = connect_highlight[0] ids = connect_highlight except Exception: ids = np.random.choice(uid, size=connect_highlight, replace=False) # Determine plotting bounds for marginalized 1-D posteriors. if span is None: span = [0.999999426697 for i in range(ndim)] span = list(span) if len(span) != ndim: raise ValueError("Dimension mismatch between samples and span.") for i, _ in enumerate(span): try: xmin, xmax = span[i] except Exception: q = [0.5 - 0.5 * span[i], 0.5 + 0.5 * span[i]] span[i] = _quantile(samples[i], q, weights=weights) # Setting up labels. if labels is None: labels = [r"$x_{%d}$" % (i + 1) for i in range(ndim)] # Setting up smoothing. if (isinstance(smooth, int_type) or isinstance(smooth, float_type)): # noqa: SIM101 smooth = [smooth for i in range(ndim)] # Setting up default plot layout. if fig is None: fig, axes = pl.subplots(ndim, 2, figsize=(12, 3 * ndim)) else: fig, axes = fig try: axes.reshape(ndim, 2) except Exception: raise ValueError("Provided axes do not match the required shape " "for plotting samples.") # Plotting. for i, x in enumerate(samples): # Plot trace. # Establish axes. if np.shape(samples)[0] == 1: ax = axes[1] else: ax = axes[i, 0] # Set color(s)/colormap(s). if trace_color is not None: if isinstance(trace_color, str_type): color = trace_color else: color = trace_color[i] else: color = wts if isinstance(trace_cmap, str_type): cmap = trace_cmap else: cmap = trace_cmap[i] # Setup axes. ax.set_xlim([0., -min(logvol)]) ax.set_ylim([min(x), max(x)]) if max_n_ticks == 0: ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) else: ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks)) ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks)) # Label axes. sf = ScalarFormatter(useMathText=use_math_text) ax.yaxis.set_major_formatter(sf) ax.set_xlabel(r"$-\ln X$", **label_kwargs) ax.set_ylabel(labels[i], **label_kwargs) # Generate scatter plot. ax.scatter(-logvol, x, c=color, cmap=cmap, **trace_kwargs) if connect: # Add lines highlighting specific particle paths. for j in ids: sel = (samples_id == j) ax.plot(-logvol[sel], x[sel], color=connect_color, **connect_kwargs) # Add truth value(s). if truths is not None and truths[i] is not None: try: [ax.axhline(t, color=truth_color, **truth_kwargs) for t in truths[i]] except Exception: ax.axhline(truths[i], color=truth_color, **truth_kwargs) # Plot marginalized 1-D posterior. # Establish axes. if np.shape(samples)[0] == 1: ax = axes[0] else: ax = axes[i, 1] # Set color(s). if isinstance(post_color, str_type): color = post_color else: color = post_color[i] # Setup axes ax.set_xlim(span[i]) if max_n_ticks == 0: ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) else: ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks)) ax.yaxis.set_major_locator(NullLocator()) # Label axes. sf = ScalarFormatter(useMathText=use_math_text) ax.xaxis.set_major_formatter(sf) ax.set_xlabel(labels[i], **label_kwargs) # Generate distribution. s = smooth[i] if isinstance(s, int_type): # If `s` is an integer, plot a weighted histogram with # `s` bins within the provided bounds. n, b, _ = ax.hist(x, bins=s, weights=weights, color=color, range=np.sort(span[i]), **post_kwargs) x0 = np.array(list(zip(b[:-1], b[1:]))).flatten() y0 = np.array(list(zip(n, n))).flatten() else: # If `s` is a float, oversample the data relative to the # smoothing filter by a factor of 10, then use a Gaussian # filter to smooth the results. if kde: bins = int(round(10. / s)) n, b = np.histogram(x, bins=bins, weights=weights, range=np.sort(span[i])) x0 = 0.5 * (b[1:] + b[:-1]) n = norm_kde(n, 10.) y0 = n ax.fill_between(x0, y0, color=color, **post_kwargs) else: bins = 40 n, b = np.histogram(x, bins=bins, weights=weights, range=np.sort(span[i])) x0 = 0.5 * (b[1:] + b[:-1]) y0 = n ax.fill_between(x0, y0, color=color, **post_kwargs) ax.set_ylim([0., max(y0) * 1.05]) # Plot quantiles. if quantiles is not None and len(quantiles) > 0: qs = _quantile(x, quantiles, weights=weights) for q in qs: ax.axvline(q, lw=2, ls="dashed", color=color) if verbose: print("Quantiles:") print(labels[i], [blob for blob in zip(quantiles, qs)]) # Add truth value(s). if truths is not None and truths[i] is not None: try: [ax.axvline(t, color=truth_color, **truth_kwargs) for t in truths[i]] except Exception: ax.axvline(truths[i], color=truth_color, **truth_kwargs) # Set titles. if show_titles: title = None if title_fmt is not None: ql, qm, qh = _quantile(x, [0.025, 0.5, 0.975], weights=weights) q_minus, q_plus = qm - ql, qh - qm fmt = "{{0:{0}}}".format(title_fmt).format title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" title = title.format(fmt(qm), fmt(q_minus), fmt(q_plus)) title = "{0} = {1}".format(labels[i], title) ax.set_title(title, **title_kwargs) return fig, axes