Source code for ultranest.hotstart

# noqa: D400 D205
"""
Warm start
----------

Helper functions for deforming the parameter space to enable
a more efficient sampling.

Based on ideas from Petrosyan & Handley (2022, https://arxiv.org/abs/2212.01760).

"""

import numpy as np

from .utils import resample_equal, vectorize


[docs] def get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1): """Return a new loglike and transform based on an auxiliary distribution. Given a likelihood and prior transform, and information about the (expected) posterior peak, generates a auxiliary likelihood and prior transform that is identical but requires fewer nested sampling iterations. This is achieved by deforming the prior space, and undoing that transformation by correction weights in the likelihood. The auxiliary distribution used for transformation/weighting is a d-dimensional Student-t distribution. Usage:: aux_loglikelihood, aux_aftertransform = get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1) aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood) aux_results = aux_sampler.run() posterior_samples = [aux_aftertransform(sample) for sample in aux_results['samples']] Parameters ------------ loglike: function original likelihood function transform: function original prior transform function ctr: array Posterior center (in u-space). invcov: array Covariance of the posterior (in u-space). enlargement_factor: float Factor by which the scale of the auxiliary distribution is enlarged in all dimensions. For Gaussian-like posteriors, sqrt(ndim) seems to work, Heavier tailed or non-elliptical distributions may need larger factors. df: float Number of degrees of freedom of the auxiliary student-t distribution. The default is recommended. For truly gaussian posteriors, the student-t can be made more gaussian (by df>=30) for accelation. Returns --------- aux_loglike: function auxiliary loglikelihood function. aux_aftertransform: function auxiliary transform function. Takes d u-space coordinates, and returns d + 1 p-space parameters. The first d return coordinates are identical to what ``transform`` would return. The final coordinate is the correction weight. """ import scipy.stats ndim, = ctr.shape assert invcov.shape == (ndim, ndim) assert df >= 1, ('Degrees of freedom must be above 1', df) l, v = np.linalg.eigh(invcov) rotation_matrix = np.dot(v, enlargement_factor * np.diag(1. / np.sqrt(l))) rv_auxiliary1d = scipy.stats.t(df) def aux_rotator(coords): return ctr + np.dot(coords, rotation_matrix) def aux_loglikelihood(u): # get uniform gauss/t distributed values: coords = rv_auxiliary1d.ppf(u) # rotate & stretch; transform into physical parameters x = aux_rotator(coords) # avoid outside regions if not (x > 0).all() or not (x < 1).all(): return -1e300 # undo the effect of the auxiliary distribution loglike_total = rv_auxiliary1d.logpdf(coords).sum() return loglike(transform(x)) - loglike_total def aux_aftertransform(u): return transform(aux_rotator(rv_auxiliary1d.ppf(u))) return aux_loglikelihood, aux_aftertransform
[docs] def get_extended_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1): """Return a new loglike and transform based on an auxiliary distribution. Given a likelihood and prior transform, and information about the (expected) posterior peak, generates a auxiliary likelihood and prior transform that is identical but requires fewer nested sampling iterations. This is achieved by deforming the prior space, and undoing that transformation by correction weights in the likelihood. The auxiliary distribution used for transformation/weighting is a d-dimensional Student-t distribution. Parameters ------------ loglike: function original likelihood function transform: function original prior transform function ctr: array Posterior center (in u-space). invcov: array Covariance of the posterior (in u-space). enlargement_factor: float Factor by which the scale of the auxiliary distribution is enlarged in all dimensions. For Gaussian-like posteriors, sqrt(ndim) seems to work, Heavier tailed or non-elliptical distributions may need larger factors. df: float Number of degrees of freedom of the auxiliary student-t distribution. The default is recommended. For truly gaussian posteriors, the student-t can be made more gaussian (by df>=30) for accelation. Returns --------- aux_loglike: function auxiliary loglikelihood function. Takes d + 1 parameters (see below). The likelihood is the same as loglike, but adds weights. aux_transform: function auxiliary transform function. Takes d u-space coordinates, and returns d + 1 p-space parameters. The first d return coordinates are identical to what ``transform`` would return. The final coordinate is the correction weight. """ import scipy.stats ndim, = ctr.shape assert invcov.shape == (ndim, ndim) assert df >= 1, ('Degrees of freedom must be above 1', df) l, v = np.linalg.eigh(invcov) rotation_matrix = np.dot(v, enlargement_factor * np.diag(1. / np.sqrt(l))) rv_auxiliary1d = scipy.stats.t(df) weight_ref = rv_auxiliary1d.logpdf(0) * ndim def aux_transform(u): # get uniform gauss/t distributed values: coords = rv_auxiliary1d.ppf(u) # rotate & stretch; transform into physical parameters x = ctr + np.dot(rotation_matrix, coords) # avoid outside regions if (x > 0).all() and (x < 1).all(): weight = -rv_auxiliary1d.logpdf(coords).sum() + weight_ref else: weight = -1e101 x = u * 0 + 0.5 # add weight as a additional parameter return np.append(transform(x), weight) def aux_loglikelihood(x): x_actual = x[:-1] weight = x[-1] if -1e100 < weight < 1e100: return loglike(x_actual) + weight - weight_ref else: return -1e300 return aux_loglikelihood, aux_transform
[docs] def get_extended_auxiliary_independent_problem(loglike, transform, ctr, err, df=1): """Return a new loglike and transform based on an auxiliary distribution. Given a likelihood and prior transform, and information about the (expected) posterior peak, generates a auxiliary likelihood and prior transform that is identical but requires fewer nested sampling iterations. This is achieved by deforming the prior space, and undoing that transformation by correction weights in the likelihood. The auxiliary distribution used for transformation/weighting is a independent Student-t distribution for each parameter. Usage:: aux_loglikelihood, aux_transform = get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1) aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood, transform=aux_transform, derived_param_names=['logweight']) aux_results = aux_sampler.run() posterior_samples = aux_results['samples'][:,-1] Parameters ------------ loglike: function original likelihood function transform: function original prior transform function ctr: array Posterior center (in u-space). err: array Standard deviation around the posterior center (in u-space). df: float Number of degrees of freedom of the auxiliary student-t distribution. The default is recommended. For truly gaussian posteriors, the student-t can be made more gaussian (by df>=30) for accelation. Returns --------- aux_loglike: function auxiliary loglikelihood function. aux_transform: function auxiliary transform function. Takes d u-space coordinates, and returns d + 1 p-space parameters. The first d return coordinates are identical to what ``transform`` would return. The final coordinate is the log of the correction weight. """ import scipy.stats ndim, = np.shape(ctr) assert np.shape(err) == (ndim,) assert df >= 1, ('Degrees of freedom must be above 1', df) rv_aux = scipy.stats.t(df, ctr, err) # handle the case where the aux distribution extends beyond the unit cube aux_lo = rv_aux.cdf(0) aux_hi = rv_aux.cdf(1) aux_w = aux_hi - aux_lo weight_ref = rv_aux.logpdf(ctr).sum() def aux_transform(u): # get uniform gauss/t distributed values: x = rv_aux.ppf(u * aux_w + aux_lo) weight = -rv_aux.logpdf(x).sum() + weight_ref return np.append(transform(x), weight) def aux_loglikelihood(x): x_actual = x[:-1] weight = x[-1] if -1e100 < weight < 1e100: return loglike(x_actual) + weight - weight_ref else: return -1e300 return aux_loglikelihood, aux_transform
[docs] def compute_quantile_intervals(steps, upoints, uweights): """Compute lower and upper axis quantiles. Parameters ------------ steps: array list of quantiles q to compute. upoints: array samples, with dimensions (N, d) uweights: array sample weights Returns --------- ulo: array list of lower quantiles (at q), one entry for each dimension d. uhi: array list of upper quantiles (at 1-q), one entry for each dimension d. """ ndim = upoints.shape[1] nboxes = len(steps) ulos = np.empty((nboxes + 1, ndim)) uhis = np.empty((nboxes + 1, ndim)) for j, pthresh in enumerate(steps): for i, ui in enumerate(upoints.transpose()): order = np.argsort(ui) c = np.cumsum(uweights[order]) usel = ui[order][np.logical_and(c >= pthresh, c <= 1 - pthresh)] ulos[j,i] = usel.min() uhis[j,i] = usel.max() ulos[-1] = 0 uhis[-1] = 1 return ulos, uhis
[docs] def compute_quantile_intervals_refined(steps, upoints, uweights, logsteps_max=20): """Compute lower and upper axis quantiles. Parameters ------------ steps: array list of quantiles q to compute, with dimensions upoints: array samples, with dimensions (N, d) uweights: array sample weights. N entries. logsteps_max: int number of intermediate steps to inject between largest quantiles interval and full unit cube Returns --------- ulo: array list of lower quantiles (at `q`), of shape (M, d), one entry per quantile and dimension d. uhi: array list of upper quantiles (at 1-`q`), of shape (M, d), one entry per quantile and dimension d. uinterpspace: array list of steps (length of `steps` plus `logsteps_max` long) """ nboxes = len(steps) ulos_orig, uhis_orig = compute_quantile_intervals(steps, upoints, uweights) assert len(ulos_orig) == nboxes + 1 assert len(uhis_orig) == nboxes + 1 smallest_axis_width = np.min(uhis_orig[-2,:] - ulos_orig[-2,:]) logsteps = min(logsteps_max, int(np.ceil(-np.log10(max(1e-100, smallest_axis_width))))) weights = np.logspace(-logsteps, 0, logsteps + 1).reshape((-1, 1)) # print("logspace:", weights, logsteps) assert len(weights) == logsteps + 1, (weights.shape, logsteps) # print("quantiles:", ulos_orig, uhis_orig) ulos_new = ulos_orig[nboxes - 1, :].reshape((1, -1)) * (1 - weights) + 0 * weights uhis_new = uhis_orig[nboxes - 1, :].reshape((1, -1)) * (1 - weights) + 1 * weights # print("additional quantiles:", ulos_new, uhis_new) ulos = np.vstack((ulos_orig[:-1,:], ulos_new)) uhis = np.vstack((uhis_orig[:-1,:], uhis_new)) # print("combined quantiles:", ulos, uhis) assert (ulos[-1,:] == 0).all() assert (uhis[-1,:] == 1).all() uinterpspace = np.ones(nboxes + logsteps + 1) uinterpspace[:nboxes + 1] = np.linspace(0, 1, nboxes + 1) assert 0 < uinterpspace[nboxes - 1] < 1, uinterpspace[nboxes] uinterpspace[nboxes:] = np.linspace(uinterpspace[nboxes - 1], 1, logsteps + 2)[1:] return ulos, uhis, uinterpspace
[docs] def get_auxiliary_contbox_parameterization( param_names, loglike, transform, upoints, uweights, vectorized=False, ): """Return a new loglike and transform based on an auxiliary distribution. Given a likelihood and prior transform, and information about the (expected) posterior peak, generates a auxiliary likelihood and prior transform that is identical but requires fewer nested sampling iterations. This is achieved by deforming the prior space, and undoing that transformation by correction weights in the likelihood. A additional parameter, "aux_logweight", is added at the end, which contains the correction weight. You can ignore it. The auxiliary distribution used for transformation/weighting is factorized. Each axis considers the ECDF of the auxiliary samples, and segments it into quantile segments. Within each segment, the parameter edges in u-space are linearly interpolated. To see the interpolation quantiles for each axis, use:: steps = 10**-(1.0 * np.arange(1, 8, 2)) ulos, uhis, uinterpspace = compute_quantile_intervals_refined(steps, upoints, uweights) Parameters ------------ param_names: list parameter names loglike: function original likelihood function transform: function original prior transform function upoints: array Posterior samples (in u-space). uweights: array Weights of samples (needs to sum of 1) vectorized: bool whether the loglike & transform functions are vectorized Returns --------- aux_param_names: list new parameter names (`param_names`) plus additional 'aux_logweight' aux_loglike: function auxiliary loglikelihood function. aux_transform: function auxiliary transform function. Takes d u-space coordinates, and returns d + 1 p-space parameters. The first d return coordinates are identical to what ``transform`` would return. The final coordinate is the log of the correction weight. vectorized: bool whether the returned functions are vectorized Usage ------ :: aux_loglikelihood, aux_transform = get_auxiliary_contbox_parameterization( loglike, transform, auxiliary_usamples) aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood, transform=aux_transform, derived_param_names=['logweight']) aux_results = aux_sampler.run() posterior_samples = aux_results['samples'][:,-1] """ upoints = np.asarray(upoints) assert upoints.ndim == 2, ('expected 2d array for upoints, got shape: %s' % upoints.shape) mask = np.logical_and(upoints > 0, upoints < 1).all(axis=1) assert np.all(mask), ( 'upoints must be between 0 and 1, have:', upoints[~mask,:]) steps = 10**-(1.0 * np.arange(1, 8, 2)) nsamples, ndim = upoints.shape assert nsamples > 10 ulos, uhis, uinterpspace = compute_quantile_intervals_refined(steps, upoints, uweights) aux_param_names = param_names + ['aux_logweight'] def aux_transform(u): ndim2, = u.shape assert ndim2 == ndim + 1 umod = np.empty(ndim) log_aux_volume_factors = 0 for i in range(ndim): ulo_here = np.interp(u[-1], uinterpspace, ulos[:,i]) uhi_here = np.interp(u[-1], uinterpspace, uhis[:,i]) umod[i] = ulo_here + (uhi_here - ulo_here) * u[i] log_aux_volume_factors += np.log(uhi_here - ulo_here) return np.append(transform(umod), log_aux_volume_factors) def aux_transform_vectorized(u): nsamples, ndim2 = u.shape assert ndim2 == ndim + 1 umod = np.empty((nsamples, ndim2 - 1)) log_aux_volume_factors = np.zeros((nsamples, 1)) for i in range(ndim): ulo_here = np.interp(u[:,-1], uinterpspace, ulos[:,i]) uhi_here = np.interp(u[:,-1], uinterpspace, uhis[:,i]) umod[:,i] = ulo_here + (uhi_here - ulo_here) * u[:,i] log_aux_volume_factors[:,0] += np.log(uhi_here - ulo_here) return np.hstack((transform(umod), log_aux_volume_factors)) def aux_loglikelihood(x): x_actual = x[:-1] logl = loglike(x_actual) aux_logweight = x[-1] # downweight if we are in the auxiliary distribution return logl + aux_logweight def aux_loglikelihood_vectorized(x): x_actual = x[:,:-1] logl = loglike(x_actual) aux_logweight = x[:,-1] # downweight if we are in the auxiliary distribution return logl + aux_logweight if vectorized: return aux_param_names, aux_loglikelihood_vectorized, aux_transform_vectorized, vectorized else: return aux_param_names, aux_loglikelihood, aux_transform, vectorized
[docs] def reuse_samples( param_names, loglike, points, logl, logw=None, logz=0.0, logzerr=0.0, upoints=None, batchsize=128, vectorized=False, log_weight_threshold=-10, **kwargs ): """ Reweight existing nested sampling run onto a new loglikelihood. Parameters ------------ param_names: list of strings Names of the parameters loglike: function New likelihood function points: np.array of shape (npoints, ndim) Equally weighted (unless logw is passed) posterior points logl: np.array(npoints) Previously likelihood values of points logw: np.array(npoints) Log-weights of existing points. logz: float Previous evidence / marginal likelihood value. logzerr: float Previous evidence / marginal likelihood uncertainty. upoints: np.array of shape (npoints, ndim) Posterior points before transformation. vectorized: bool Whether loglike function is vectorized batchsize: int Number of points simultaneously passed to vectorized loglike function log_weight_threshold: float Lowest log-weight to consider Returns --------- results: dict All information of the run. Important keys: Number of nested sampling iterations (niter), Evidence estimate (logz), Effective Sample Size (ess), weighted samples (weighted_samples), equally weighted samples (samples), best-fit point information (maximum_likelihood), posterior summaries (posterior). """ if not vectorized: loglike = vectorize(loglike) Npoints, ndim = points.shape if logw is None: # assume equally distributed if no weights given logw = np.zeros(Npoints) - np.log(Npoints) logl_new = np.zeros(Npoints) - np.inf logw_new = np.zeros(Npoints) - np.inf assert logl.shape == (Npoints,) assert logw.shape == (Npoints,) # process points, highest weight first: indices = np.argsort(logl + logw)[::-1] ncall = 0 for i in range(int(np.ceil(Npoints / batchsize))): batch = indices[i * batchsize:(i + 1) * batchsize] logl_new[batch] = loglike(points[batch,:]) logw_new[batch] = logw[batch] + logl_new[batch] ncall += len(batch) if (logw_new[batch] < np.nanmax(logw_new) - np.log(Npoints) + log_weight_threshold).all(): print("skipping", i) break logw_new0 = logw_new.max() w = np.exp(logw_new - logw_new0) print("weights:", w) logz_new = np.log(w.sum()) + logw_new0 w /= w.sum() ess = len(w) / (1.0 + ((len(w) * w - 1)**2).sum() / len(w)) integral_uncertainty_estimator = (((w - 1 / Npoints)**2).sum() / (Npoints - 1))**0.5 logzerr_new = np.log(1 + integral_uncertainty_estimator) logzerr_new_total = (logzerr_new**2 + logzerr**2)**0.5 samples = resample_equal(points, w) information_gain_bits = [] for i in range(ndim): H, _ = np.histogram(points[:,i], weights=w, density=True, bins=np.linspace(0, 1, 40)) information_gain_bits.append(float((np.log2(1 / ((H + 0.001) * 40)) / 40).sum())) j = logl_new.argmax() return dict( ncall=ncall, niter=Npoints, logz=logz_new, logzerr=logzerr_new_total, ess=ess, posterior=dict( mean=samples.mean(axis=0).tolist(), stdev=samples.std(axis=0).tolist(), median=np.percentile(samples, 50, axis=0).tolist(), errlo=np.percentile(samples, 15.8655, axis=0).tolist(), errup=np.percentile(samples, 84.1345, axis=0).tolist(), information_gain_bits=information_gain_bits, ), weighted_samples=dict( upoints=upoints, points=points, weights=w, logw=logw, logl=logl_new), samples=samples, maximum_likelihood=dict( logl=logl_new[j], point=points[j,:].tolist(), point_untransformed=upoints[j,:].tolist() if upoints is not None else None, ), param_names=param_names, )