# noqa: D400 D205
"""
Warm start
----------
Helper functions for deforming the parameter space to enable
a more efficient sampling.
Based on ideas from Petrosyan & Handley (2022, https://arxiv.org/abs/2212.01760).
"""
import numpy as np
from .utils import resample_equal, vectorize
[docs]
def get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1):
"""Return a new loglike and transform based on an auxiliary distribution.
Given a likelihood and prior transform, and information about
the (expected) posterior peak, generates a auxiliary
likelihood and prior transform that is identical but
requires fewer nested sampling iterations.
This is achieved by deforming the prior space, and undoing that
transformation by correction weights in the likelihood.
The auxiliary distribution used for transformation/weighting is
a d-dimensional Student-t distribution.
Usage::
aux_loglikelihood, aux_aftertransform = get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1)
aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood)
aux_results = aux_sampler.run()
posterior_samples = [aux_aftertransform(sample) for sample in aux_results['samples']]
Parameters
------------
loglike: function
original likelihood function
transform: function
original prior transform function
ctr: array
Posterior center (in u-space).
invcov: array
Covariance of the posterior (in u-space).
enlargement_factor: float
Factor by which the scale of the auxiliary distribution is enlarged
in all dimensions.
For Gaussian-like posteriors, sqrt(ndim) seems to work,
Heavier tailed or non-elliptical distributions may need larger factors.
df: float
Number of degrees of freedom of the auxiliary student-t distribution.
The default is recommended. For truly gaussian posteriors,
the student-t can be made more gaussian (by df>=30) for accelation.
Returns
---------
aux_loglike: function
auxiliary loglikelihood function.
aux_aftertransform: function
auxiliary transform function.
Takes d u-space coordinates, and returns d + 1 p-space parameters.
The first d return coordinates are identical to what ``transform`` would return.
The final coordinate is the correction weight.
"""
import scipy.stats
ndim, = ctr.shape
assert invcov.shape == (ndim, ndim)
assert df >= 1, ('Degrees of freedom must be above 1', df)
l, v = np.linalg.eigh(invcov)
rotation_matrix = np.dot(v, enlargement_factor * np.diag(1. / np.sqrt(l)))
rv_auxiliary1d = scipy.stats.t(df)
def aux_rotator(coords):
return ctr + np.dot(coords, rotation_matrix)
def aux_loglikelihood(u):
# get uniform gauss/t distributed values:
coords = rv_auxiliary1d.ppf(u)
# rotate & stretch; transform into physical parameters
x = aux_rotator(coords)
# avoid outside regions
if not (x > 0).all() or not (x < 1).all():
return -1e300
# undo the effect of the auxiliary distribution
loglike_total = rv_auxiliary1d.logpdf(coords).sum()
return loglike(transform(x)) - loglike_total
def aux_aftertransform(u):
return transform(aux_rotator(rv_auxiliary1d.ppf(u)))
return aux_loglikelihood, aux_aftertransform
[docs]
def get_extended_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1):
"""Return a new loglike and transform based on an auxiliary distribution.
Given a likelihood and prior transform, and information about
the (expected) posterior peak, generates a auxiliary
likelihood and prior transform that is identical but
requires fewer nested sampling iterations.
This is achieved by deforming the prior space, and undoing that
transformation by correction weights in the likelihood.
The auxiliary distribution used for transformation/weighting is
a d-dimensional Student-t distribution.
Parameters
------------
loglike: function
original likelihood function
transform: function
original prior transform function
ctr: array
Posterior center (in u-space).
invcov: array
Covariance of the posterior (in u-space).
enlargement_factor: float
Factor by which the scale of the auxiliary distribution is enlarged
in all dimensions.
For Gaussian-like posteriors, sqrt(ndim) seems to work,
Heavier tailed or non-elliptical distributions may need larger factors.
df: float
Number of degrees of freedom of the auxiliary student-t distribution.
The default is recommended. For truly gaussian posteriors,
the student-t can be made more gaussian (by df>=30) for accelation.
Returns
---------
aux_loglike: function
auxiliary loglikelihood function. Takes d + 1 parameters (see below).
The likelihood is the same as loglike, but adds weights.
aux_transform: function
auxiliary transform function.
Takes d u-space coordinates, and returns d + 1 p-space parameters.
The first d return coordinates are identical to what ``transform`` would return.
The final coordinate is the correction weight.
"""
import scipy.stats
ndim, = ctr.shape
assert invcov.shape == (ndim, ndim)
assert df >= 1, ('Degrees of freedom must be above 1', df)
l, v = np.linalg.eigh(invcov)
rotation_matrix = np.dot(v, enlargement_factor * np.diag(1. / np.sqrt(l)))
rv_auxiliary1d = scipy.stats.t(df)
weight_ref = rv_auxiliary1d.logpdf(0) * ndim
def aux_transform(u):
# get uniform gauss/t distributed values:
coords = rv_auxiliary1d.ppf(u)
# rotate & stretch; transform into physical parameters
x = ctr + np.dot(rotation_matrix, coords)
# avoid outside regions
if (x > 0).all() and (x < 1).all():
weight = -rv_auxiliary1d.logpdf(coords).sum() + weight_ref
else:
weight = -1e101
x = u * 0 + 0.5
# add weight as a additional parameter
return np.append(transform(x), weight)
def aux_loglikelihood(x):
x_actual = x[:-1]
weight = x[-1]
if -1e100 < weight < 1e100:
return loglike(x_actual) + weight - weight_ref
else:
return -1e300
return aux_loglikelihood, aux_transform
[docs]
def get_extended_auxiliary_independent_problem(loglike, transform, ctr, err, df=1):
"""Return a new loglike and transform based on an auxiliary distribution.
Given a likelihood and prior transform, and information about
the (expected) posterior peak, generates a auxiliary
likelihood and prior transform that is identical but
requires fewer nested sampling iterations.
This is achieved by deforming the prior space, and undoing that
transformation by correction weights in the likelihood.
The auxiliary distribution used for transformation/weighting is
a independent Student-t distribution for each parameter.
Usage::
aux_loglikelihood, aux_transform = get_auxiliary_problem(loglike, transform, ctr, invcov, enlargement_factor, df=1)
aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood, transform=aux_transform, derived_param_names=['logweight'])
aux_results = aux_sampler.run()
posterior_samples = aux_results['samples'][:,-1]
Parameters
------------
loglike: function
original likelihood function
transform: function
original prior transform function
ctr: array
Posterior center (in u-space).
err: array
Standard deviation around the posterior center (in u-space).
df: float
Number of degrees of freedom of the auxiliary student-t distribution.
The default is recommended. For truly gaussian posteriors,
the student-t can be made more gaussian (by df>=30) for accelation.
Returns
---------
aux_loglike: function
auxiliary loglikelihood function.
aux_transform: function
auxiliary transform function.
Takes d u-space coordinates, and returns d + 1 p-space parameters.
The first d return coordinates are identical to what ``transform`` would return.
The final coordinate is the log of the correction weight.
"""
import scipy.stats
ndim, = np.shape(ctr)
assert np.shape(err) == (ndim,)
assert df >= 1, ('Degrees of freedom must be above 1', df)
rv_aux = scipy.stats.t(df, ctr, err)
# handle the case where the aux distribution extends beyond the unit cube
aux_lo = rv_aux.cdf(0)
aux_hi = rv_aux.cdf(1)
aux_w = aux_hi - aux_lo
weight_ref = rv_aux.logpdf(ctr).sum()
def aux_transform(u):
# get uniform gauss/t distributed values:
x = rv_aux.ppf(u * aux_w + aux_lo)
weight = -rv_aux.logpdf(x).sum() + weight_ref
return np.append(transform(x), weight)
def aux_loglikelihood(x):
x_actual = x[:-1]
weight = x[-1]
if -1e100 < weight < 1e100:
return loglike(x_actual) + weight - weight_ref
else:
return -1e300
return aux_loglikelihood, aux_transform
[docs]
def compute_quantile_intervals(steps, upoints, uweights):
"""Compute lower and upper axis quantiles.
Parameters
------------
steps: array
list of quantiles q to compute.
upoints: array
samples, with dimensions (N, d)
uweights: array
sample weights
Returns
---------
ulo: array
list of lower quantiles (at q), one entry for each dimension d.
uhi: array
list of upper quantiles (at 1-q), one entry for each dimension d.
"""
ndim = upoints.shape[1]
nboxes = len(steps)
ulos = np.empty((nboxes + 1, ndim))
uhis = np.empty((nboxes + 1, ndim))
for j, pthresh in enumerate(steps):
for i, ui in enumerate(upoints.transpose()):
order = np.argsort(ui)
c = np.cumsum(uweights[order])
usel = ui[order][np.logical_and(c >= pthresh, c <= 1 - pthresh)]
ulos[j,i] = usel.min()
uhis[j,i] = usel.max()
ulos[-1] = 0
uhis[-1] = 1
return ulos, uhis
[docs]
def compute_quantile_intervals_refined(steps, upoints, uweights, logsteps_max=20):
"""Compute lower and upper axis quantiles.
Parameters
------------
steps: array
list of quantiles q to compute, with dimensions
upoints: array
samples, with dimensions (N, d)
uweights: array
sample weights. N entries.
logsteps_max: int
number of intermediate steps to inject between largest quantiles interval and full unit cube
Returns
---------
ulo: array
list of lower quantiles (at `q`), of shape (M, d), one entry per quantile and dimension d.
uhi: array
list of upper quantiles (at 1-`q`), of shape (M, d), one entry per quantile and dimension d.
uinterpspace: array
list of steps (length of `steps` plus `logsteps_max` long)
"""
nboxes = len(steps)
ulos_orig, uhis_orig = compute_quantile_intervals(steps, upoints, uweights)
assert len(ulos_orig) == nboxes + 1
assert len(uhis_orig) == nboxes + 1
smallest_axis_width = np.min(uhis_orig[-2,:] - ulos_orig[-2,:])
logsteps = min(logsteps_max, int(np.ceil(-np.log10(max(1e-100, smallest_axis_width)))))
weights = np.logspace(-logsteps, 0, logsteps + 1).reshape((-1, 1))
# print("logspace:", weights, logsteps)
assert len(weights) == logsteps + 1, (weights.shape, logsteps)
# print("quantiles:", ulos_orig, uhis_orig)
ulos_new = ulos_orig[nboxes - 1, :].reshape((1, -1)) * (1 - weights) + 0 * weights
uhis_new = uhis_orig[nboxes - 1, :].reshape((1, -1)) * (1 - weights) + 1 * weights
# print("additional quantiles:", ulos_new, uhis_new)
ulos = np.vstack((ulos_orig[:-1,:], ulos_new))
uhis = np.vstack((uhis_orig[:-1,:], uhis_new))
# print("combined quantiles:", ulos, uhis)
assert (ulos[-1,:] == 0).all()
assert (uhis[-1,:] == 1).all()
uinterpspace = np.ones(nboxes + logsteps + 1)
uinterpspace[:nboxes + 1] = np.linspace(0, 1, nboxes + 1)
assert 0 < uinterpspace[nboxes - 1] < 1, uinterpspace[nboxes]
uinterpspace[nboxes:] = np.linspace(uinterpspace[nboxes - 1], 1, logsteps + 2)[1:]
return ulos, uhis, uinterpspace
[docs]
def get_auxiliary_contbox_parameterization(
param_names, loglike, transform, upoints, uweights, vectorized=False,
):
"""Return a new loglike and transform based on an auxiliary distribution.
Given a likelihood and prior transform, and information about
the (expected) posterior peak, generates a auxiliary
likelihood and prior transform that is identical but
requires fewer nested sampling iterations.
This is achieved by deforming the prior space, and undoing that
transformation by correction weights in the likelihood.
A additional parameter, "aux_logweight", is added at the end,
which contains the correction weight. You can ignore it.
The auxiliary distribution used for transformation/weighting is
factorized. Each axis considers the ECDF of the auxiliary samples,
and segments it into quantile segments. Within each segment,
the parameter edges in u-space are linearly interpolated.
To see the interpolation quantiles for each axis, use::
steps = 10**-(1.0 * np.arange(1, 8, 2))
ulos, uhis, uinterpspace = compute_quantile_intervals_refined(steps, upoints, uweights)
Parameters
------------
param_names: list
parameter names
loglike: function
original likelihood function
transform: function
original prior transform function
upoints: array
Posterior samples (in u-space).
uweights: array
Weights of samples (needs to sum of 1)
vectorized: bool
whether the loglike & transform functions are vectorized
Returns
---------
aux_param_names: list
new parameter names (`param_names`) plus additional 'aux_logweight'
aux_loglike: function
auxiliary loglikelihood function.
aux_transform: function
auxiliary transform function.
Takes d u-space coordinates, and returns d + 1 p-space parameters.
The first d return coordinates are identical to what ``transform`` would return.
The final coordinate is the log of the correction weight.
vectorized: bool
whether the returned functions are vectorized
Usage
------
::
aux_loglikelihood, aux_transform = get_auxiliary_contbox_parameterization(
loglike, transform, auxiliary_usamples)
aux_sampler = ReactiveNestedSampler(parameters, aux_loglikelihood, transform=aux_transform, derived_param_names=['logweight'])
aux_results = aux_sampler.run()
posterior_samples = aux_results['samples'][:,-1]
"""
upoints = np.asarray(upoints)
assert upoints.ndim == 2, ('expected 2d array for upoints, got shape: %s' % upoints.shape)
mask = np.logical_and(upoints > 0, upoints < 1).all(axis=1)
assert np.all(mask), (
'upoints must be between 0 and 1, have:', upoints[~mask,:])
steps = 10**-(1.0 * np.arange(1, 8, 2))
nsamples, ndim = upoints.shape
assert nsamples > 10
ulos, uhis, uinterpspace = compute_quantile_intervals_refined(steps, upoints, uweights)
aux_param_names = param_names + ['aux_logweight']
def aux_transform(u):
ndim2, = u.shape
assert ndim2 == ndim + 1
umod = np.empty(ndim)
log_aux_volume_factors = 0
for i in range(ndim):
ulo_here = np.interp(u[-1], uinterpspace, ulos[:,i])
uhi_here = np.interp(u[-1], uinterpspace, uhis[:,i])
umod[i] = ulo_here + (uhi_here - ulo_here) * u[i]
log_aux_volume_factors += np.log(uhi_here - ulo_here)
return np.append(transform(umod), log_aux_volume_factors)
def aux_transform_vectorized(u):
nsamples, ndim2 = u.shape
assert ndim2 == ndim + 1
umod = np.empty((nsamples, ndim2 - 1))
log_aux_volume_factors = np.zeros((nsamples, 1))
for i in range(ndim):
ulo_here = np.interp(u[:,-1], uinterpspace, ulos[:,i])
uhi_here = np.interp(u[:,-1], uinterpspace, uhis[:,i])
umod[:,i] = ulo_here + (uhi_here - ulo_here) * u[:,i]
log_aux_volume_factors[:,0] += np.log(uhi_here - ulo_here)
return np.hstack((transform(umod), log_aux_volume_factors))
def aux_loglikelihood(x):
x_actual = x[:-1]
logl = loglike(x_actual)
aux_logweight = x[-1]
# downweight if we are in the auxiliary distribution
return logl + aux_logweight
def aux_loglikelihood_vectorized(x):
x_actual = x[:,:-1]
logl = loglike(x_actual)
aux_logweight = x[:,-1]
# downweight if we are in the auxiliary distribution
return logl + aux_logweight
if vectorized:
return aux_param_names, aux_loglikelihood_vectorized, aux_transform_vectorized, vectorized
else:
return aux_param_names, aux_loglikelihood, aux_transform, vectorized
[docs]
def reuse_samples(
param_names, loglike, points, logl, logw=None,
logz=0.0, logzerr=0.0, upoints=None,
batchsize=128, vectorized=False, log_weight_threshold=-10,
**kwargs
):
"""
Reweight existing nested sampling run onto a new loglikelihood.
Parameters
------------
param_names: list of strings
Names of the parameters
loglike: function
New likelihood function
points: np.array of shape (npoints, ndim)
Equally weighted (unless logw is passed) posterior points
logl: np.array(npoints)
Previously likelihood values of points
logw: np.array(npoints)
Log-weights of existing points.
logz: float
Previous evidence / marginal likelihood value.
logzerr: float
Previous evidence / marginal likelihood uncertainty.
upoints: np.array of shape (npoints, ndim)
Posterior points before transformation.
vectorized: bool
Whether loglike function is vectorized
batchsize: int
Number of points simultaneously passed to vectorized loglike function
log_weight_threshold: float
Lowest log-weight to consider
Returns
---------
results: dict
All information of the run. Important keys:
Number of nested sampling iterations (niter),
Evidence estimate (logz),
Effective Sample Size (ess),
weighted samples (weighted_samples),
equally weighted samples (samples),
best-fit point information (maximum_likelihood),
posterior summaries (posterior).
"""
if not vectorized:
loglike = vectorize(loglike)
Npoints, ndim = points.shape
if logw is None:
# assume equally distributed if no weights given
logw = np.zeros(Npoints) - np.log(Npoints)
logl_new = np.zeros(Npoints) - np.inf
logw_new = np.zeros(Npoints) - np.inf
assert logl.shape == (Npoints,)
assert logw.shape == (Npoints,)
# process points, highest weight first:
indices = np.argsort(logl + logw)[::-1]
ncall = 0
for i in range(int(np.ceil(Npoints / batchsize))):
batch = indices[i * batchsize:(i + 1) * batchsize]
logl_new[batch] = loglike(points[batch,:])
logw_new[batch] = logw[batch] + logl_new[batch]
ncall += len(batch)
if (logw_new[batch] < np.nanmax(logw_new) - np.log(Npoints) + log_weight_threshold).all():
print("skipping", i)
break
logw_new0 = logw_new.max()
w = np.exp(logw_new - logw_new0)
print("weights:", w)
logz_new = np.log(w.sum()) + logw_new0
w /= w.sum()
ess = len(w) / (1.0 + ((len(w) * w - 1)**2).sum() / len(w))
integral_uncertainty_estimator = (((w - 1 / Npoints)**2).sum() / (Npoints - 1))**0.5
logzerr_new = np.log(1 + integral_uncertainty_estimator)
logzerr_new_total = (logzerr_new**2 + logzerr**2)**0.5
samples = resample_equal(points, w)
information_gain_bits = []
for i in range(ndim):
H, _ = np.histogram(points[:,i], weights=w, density=True, bins=np.linspace(0, 1, 40))
information_gain_bits.append(float((np.log2(1 / ((H + 0.001) * 40)) / 40).sum()))
j = logl_new.argmax()
return dict(
ncall=ncall,
niter=Npoints,
logz=logz_new, logzerr=logzerr_new_total,
ess=ess,
posterior=dict(
mean=samples.mean(axis=0).tolist(),
stdev=samples.std(axis=0).tolist(),
median=np.percentile(samples, 50, axis=0).tolist(),
errlo=np.percentile(samples, 15.8655, axis=0).tolist(),
errup=np.percentile(samples, 84.1345, axis=0).tolist(),
information_gain_bits=information_gain_bits,
),
weighted_samples=dict(
upoints=upoints, points=points, weights=w, logw=logw,
logl=logl_new),
samples=samples,
maximum_likelihood=dict(
logl=logl_new[j],
point=points[j,:].tolist(),
point_untransformed=upoints[j,:].tolist() if upoints is not None else None,
),
param_names=param_names,
)