Source code for bxa.sherpa.qq

# -*- coding: utf-8 -*-
"""

QQ plots and goodness of fit

"""
import os
if 'MAKESPHINXDOC' not in os.environ:
	import sherpa.astro.ui as ui
	from sherpa.stats import Cash, CStat

import numpy
import json
from math import log10, isnan
from numpy import logical_and

# KS-stat

[docs] def KSstat(data, model, staterror=None, syserror=None, weight=None): modelc = model.cumsum() / model.sum() datac = data.cumsum() / data.sum() ks = numpy.abs(modelc - datac).max() return ks, 0
[docs] def CvMstat(data, model, staterror=None, syserror=None, weight=None): modelc = model.cumsum() datac = data.cumsum() maxmodelc = modelc.max() cvm = ((modelc / maxmodelc - datac / datac.max())**2 * model / maxmodelc).sum() return cvm, 0
[docs] def ADstat(data, model, staterror=None, syserror=None, weight=None): modelc = model.cumsum() datac = data.cumsum() maxmodelc = modelc.max() valid = numpy.logical_and(modelc > 0, maxmodelc - modelc > 0) modelc = modelc[valid] / maxmodelc datac = datac[valid] / datac.max() model = model[valid] / maxmodelc assert (modelc > 0).all(), ['ADstat has zero cumulative denominator', modelc] assert (maxmodelc - modelc > 0).all(), ['ADstat has zero=1-1 cumulative denominator', maxmodelc - modelc] ad = ((modelc - datac)**2 / (modelc * (maxmodelc - modelc)) * model).sum() return ad, 0
[docs] def fake_staterr_func(data): return data**0.5
[docs] def qq_export(id=None, bkg=False, outfile='qq.txt', elow=None, ehigh=None): """ Export Q-Q plot into a file for plotting. :param id: spectrum id to use (see get_bkg_plot/get_data_plot) :param bkg: whether to use get_bkg_plot or get_data_plot :param outfile: filename to write results into :param elow: low energy limit :param ehigh: low energy limit Example:: qq.qq_export('bg', outfile='my_bg_qq', elow=0.2, ehigh=10) """ # data d = ui.get_bkg_plot(id=id) if bkg else ui.get_data_plot(id=id) e = d.x mask = logical_and(e >= elow, e <= ehigh) data = d.y[mask].cumsum() d = ui.get_bkg_model_plot(id=id) if bkg else ui.get_model_plot(id=id) e = d.xlo mask = logical_and(e >= elow, e <= ehigh) e = e[mask] model = d.y[mask].cumsum() last_stat = ui.get_stat() ui.set_stat(ksstat) ks = ui.calc_stat() ui.set_stat(cvmstat) cvm = ui.calc_stat() ui.set_stat(adstat) ad = ui.calc_stat() ui.set_stat(last_stat) ad = ui.calc_stat() ui.set_stat('chi2gehrels') chi2 = ui.calc_stat() ui.set_stat('cstat') cstat = ui.calc_stat() ui.set_stat(last_stat) stats = dict(ks=ks, cvm=cvm, ad=ad, cstat=cstat, chi2=chi2) numpy.savetxt(outfile, numpy.transpose([e, data, model])) json.dump(stats, open(outfile + '.json', 'w'), indent=4)
if 'MAKESPHINXDOC' not in os.environ: ui.load_user_stat("ksstat", KSstat, fake_staterr_func) ui.load_user_stat("cvmstat", CvMstat, fake_staterr_func) ui.load_user_stat("adstat", ADstat, fake_staterr_func)