Source code for bxa.sherpa.priors

#!/usr/bin/env python
# -*- coding: utf-8 -*- 
from __future__ import print_function

"""
BXA (Bayesian X-ray Analysis) for Sherpa

Copyright: Johannes Buchner (C) 2013-2015

Priors
"""
from math import log10, erf
import numpy
from . import invgauss

[docs] def create_uniform_prior_for(parameter): """ Use for location variables (position) The uniform prior gives equal weight in non-logarithmic scale. :param parameter: Parameter to create a prior for. E.g. xspowerlaw.mypowerlaw.PhoIndex """ spread = (parameter.max - parameter.min) low = parameter.min return lambda x: x * spread + low
[docs] def create_jeffreys_prior_for(parameter): """deprecated name for create_loguniform_prior_for""" return create_loguniform_prior_for(parameter)
[docs] def create_loguniform_prior_for(parameter): """ Use for scale variables (order of magnitude) The Jeffreys prior gives equal weight to each order of magnitude between the minimum and maximum value. Flat in logarithmic scale. :param parameter: Parameter to create a prior for. E.g. xspowerlaw.mypowerlaw.norm It is usually easier to create an ancillary parameter, and link the actual parameter, like so:: from sherpa.models.parameter import Parameter lognorm = Parameter(modelname='mycomponent', name='lognorm', val=-5, min=-4*2, max=0) powerlaw.norm = 10**lognorm """ assert parameter.min > 0 and parameter.max > 0, ('The limits of "%s" (min and max) are not positive.' % parameter.fullname) low = log10(parameter.min) spread = log10(parameter.max) - log10(parameter.min) return lambda x: 10**(x * spread + low)
[docs] def create_gaussian_prior_for(parameter, mean, std): """ Use for informed variables. The Gaussian prior weights by a Gaussian in the parameter. If you would like the logarithm of the parameter to be weighted by a Gaussian, create a ancillary parameter (see create_jeffreys_prior_for). :param parameter: Parameter to create a prior for. E.g. xspowerlaw.mypowerlaw.PhoIndex :param mean: Mean of the Gaussian :param std: Standard deviation of the Gaussian """ import scipy.stats lo = parameter.min hi = parameter.max rv = scipy.stats.norm(mean, std) xlo = rv.cdf(lo) xhi = rv.cdf(hi) def gauss_transform(x): return rv.ppf(x * (xhi - xlo) + xlo) return gauss_transform
[docs] def prior_from_file(filename, parameter): """ Read a custom prior distribution from a file. The file should have two columns: cumulative probability and value, in ascii format. The cumulative probability has to be equally spaced and should exclude 0 and 1. Returns a sherpa parameter, a list with that parameter inside, and the prior function. If the file only constains a single value, that value is returned along with two empty lists. """ dist = numpy.loadtxt(filename) if numpy.shape(dist) == (): parameter.val = float(dist) return float(dist), [], [] distz = numpy.array(list(dist[:, 1]) + [dist[-1,1]]*2) #deltax = dist[1,0] - dist[0,0] n = len(dist) def custom_priorf(x): assert x >= 0 assert x <= 1 i = int(numpy.floor(x*n)) r = distz[i] + (distz[i + 1] - distz[i]) * (x * n - i) return r return parameter, [parameter], [custom_priorf]
[docs] def create_prior_function(priors = [], parameters = None): """ Combine the prior transformations into a single function. This assumes factorized (independent) priors. :param priors: individual prior transforms to combine into one function. If priors is empty, uniform priors are used on all passed parameters :param parameters: If priors is empty, specify the list of parameters. Uniform priors will be created for them. """ if priors == []: functions = [] assert parameters is not None, "you need to pass the parameters if you want automatic uniform priors" thawedparmins = [p.min for p in parameters] thawedparmaxes = [p.max for p in parameters] for low, high in zip(thawedparmins, thawedparmaxes): functions.append(lambda x: x * (high - low) + low) else: functions = priors def prior_function(cube, ndim, nparams): for i in range(ndim): cube[i] = functions[i](cube[i]) return prior_function