http://arxiv.org/abs/1402.0004
Poisson likelihood($\theta$ $\rightarrow$ model $\rightarrow$ telescope; data)
$$\cal{L}(\theta|M)$$
Tells how likely it is to generate the observed data, assuming parameters $\theta$ and
model $M$ are the real ones.
Many outcomes possible
import bxa.xspec as bxa
from xspec import *
Fit.statMethod = 'cstat'
Plot.xAxis = 'keV'
s = Spectrum('example-file.fak')
s.notice("0.2-8.0")
m = Model("pow")
# set parameters range : val, delta, min, bottom, top, max
m.powerlaw.norm.values = ",,1e-10,1e-10,1e1,1e1" # 10^-10 .. 10
m.powerlaw.PhoIndex.values = ",,1,1,5,5" # 1 .. 3
m.fit()
import bxa.xspec as bxa
from xspec import *
Fit.statMethod = 'cstat'
Plot.xAxis = 'keV'
s = Spectrum('example-file.fak')
s.ignore("**"); s.notice("0.2-8.0")
m = Model("pow")
# set parameters range : val, delta, min, bottom, top, max
m.powerlaw.norm.values = ",,1e-10,1e-10,1e1,1e1" # 10^-10 .. 10
m.powerlaw.PhoIndex.values = ",,1,1,5,5" # 1 .. 3
transformations = [
bxa.create_uniform_prior_for( m, m.powerlaw.PhoIndex),
bxa.create_jeffreys_prior_for(m, m.powerlaw.norm) ]
bxa.standard_analysis(transformations,
outputfiles_basename = 'simplest-',)
$N_H$ | $\Gamma$ |
---|---|
22.4 | 1.9 |
22.45 | 1.8 |
22.38 | 1.8 |
... | ... |
produces $Z$ value: "evidence for the current model"
Bayes factor $$B = \frac{Z_1}{Z_2}$$
Odds ratio $$O = \frac{P_1}{P_2} \frac{Z_1}{Z_2} = 100$$
model 1 is 100x more probably than model 2, given this data
$O \sim 1$: can not distinguish!
CDFS: ~300 AGN detected
represents physical scenario: $\Gamma$, $N_H$, normalisation
Normalisation ~ L | log-uniform |
$\Gamma$ | informed prior $1.95\pm0.15$ |
column density $N_H$ | log-uniform |
z | informed prior: photo-z pdf |
Already best practise | Proposed | |
---|---|---|
|
|
|
$\rightarrow$ see paper