Santiago de Chile / Mar 2015
in collaboration with A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, M. Brightman, A. Merloni and M. Salvato
Buchner et al. 2014 - arxiv:1402.0004
from xspec import *
Fit.statMethod = 'cstat'
Plot.xAxis = 'keV'
s = Spectrum('example-file.fak')
s.notice("0.2-8.0")
m = Model("pow")
# set parameters range : val, delta, min, bottom, top, max
m.powerlaw.norm.values = ",,1e-10,1e-10,1e1,1e1" # 10^-10 .. 10
m.powerlaw.PhoIndex.values = ",,1,1,5,5" # 1 .. 3
m.fit()
from xspec import *
Fit.statMethod = 'cstat'
Plot.xAxis = 'keV'
s = Spectrum('example-file.fak')
s.ignore("**"); s.notice("0.2-8.0")
m = Model("pow")
# set parameters range : val, delta, min, bottom, top, max
m.powerlaw.norm.values = ",,1e-10,1e-10,1e1,1e1" # 10^-10 .. 10
m.powerlaw.PhoIndex.values = ",,1,1,5,5" # 1 .. 3
import bxa.xspec as bxa
transformations = [
bxa.create_uniform_prior_for( m, m.powerlaw.PhoIndex),
bxa.create_jeffreys_prior_for(m, m.powerlaw.norm) ]
bxa.standard_analysis(transformations,
outputfiles_basename = 'simplest-',)
distinguish two models via data can use any statistic
does not have to be probabilistic
red: falsely choose powerlaw, for wabs input
red: falsely choose wabs, for powerlaw input
Bayesian evidence $$ {P(A|D)\over P(B|D)} = {P(A)\over P(B)} \times {Z_A\over Z_B} $$
interpretation of Z-ratio under flat priors:
explores the problem in
measures and describes shapes (like MCMC)
/utils/bxa
Likelihood value evaluated "everywhere"
results coincide for some choice of prior (usually "flat").
norm | $N_H$ | $z$ |
---|---|---|
-4.1 | 22.4 | 2.3 |
-4.3 | 22.45 | 2.4 |
-4.3 | 22.38 | 2.5 |
... | ... |
just make histogram of 1/2 columns
contains all correlations
norm | $N_H$ | $z$ |
---|---|---|
-4.1 | 22.4 | 2.3 |
-4.3 | 22.45 | 2.4 |
-4.3 | 22.38 | 2.5 |
... | ... |
incorporates uncertainty in $z$ and the parameters!
good fit if straight line